Artificial Intelligence-Enhanced Intrusion Detection Systems for Drone Security: a Real-Time Evaluation of Algorithmic Efficacy in Mitigating Wireless Vulnerabilities

dc.contributor.author Senturk, Kenan
dc.contributor.author Gormus, Ahmet Faruk
dc.contributor.author Gonen, Serkan
dc.contributor.author Bariskan, Mehmet Ali
dc.contributor.author Durmaz, Ahmet Kaan
dc.date.accessioned 2025-03-15T20:07:13Z
dc.date.available 2025-03-15T20:07:13Z
dc.date.issued 2025
dc.description.abstract Advancements in science and technology have provided extensive opportunities and conveniences for mankind. One prime example of these advancements is wireless communication technology. This technology provides users with mobility during communication, initiating a paradigm shift. The convenience of wireless communication technology has initiated the production of versatile devices. Among these technologies developed in recent years for observation and detection purposes in various fields, drones have taken a leading role. Drones, with their versatile applications and access to real-time data, are being used in various operations. With such utilization, humans are increasingly interacting with these systems, leading to natural human-drone interaction. However, in these human-drone interactions, as is the case with many wireless devices, security often becomes an afterthought, leaving many drones vulnerable to cyber attacks. The most effective way to protect against these attackers is to conduct vulnerability analyses of the systems we use against emerging threats and address the detected vulnerabilities. This paper investigates the vulnerabilities of wireless communication regarding remote connectivity usage of a commercial drone, the DJI Ryze Tello, with the aim of examining its weaknesses. In this context, a test environment was created to reveal problems and threats in drone technology through attacks executed on the test environment (DEAUTH ATTACK, Port Scan DOS, DDoS, and MitM). Following the identification of these vulnerabilities, an artificial intelligence-based study was carried out to detect these attacks. In the study, the percentages of attack detection using different algorithms were verified with graphs. en_US
dc.identifier.doi 10.1007/s10586-024-04911-8
dc.identifier.issn 1386-7857
dc.identifier.issn 1573-7543
dc.identifier.scopus 2-s2.0-85217280418
dc.identifier.uri https://doi.org/10.1007/s10586-024-04911-8
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Cluster Computing
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Drones en_US
dc.subject Drone Security en_US
dc.subject Cyber Security en_US
dc.subject Artificial Intelligence en_US
dc.subject Iot en_US
dc.title Artificial Intelligence-Enhanced Intrusion Detection Systems for Drone Security: a Real-Time Evaluation of Algorithmic Efficacy in Mitigating Wireless Vulnerabilities en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.wosid Senturk, Kenan/Aap-4177-2020
gdc.author.wosid Gonen, Serkan/Aat-6971-2020
gdc.author.wosid Barışkan, Mehmet/Abc-2773-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Senturk, Kenan; Gonen, Serkan; Bariskan, Mehmet Ali] Istanbul Gelisim Univ, Fac Engn & Architecture, Istanbul, Turkiye; [Gormus, Ahmet Faruk] Arsoft Engn LC, Istanbul, Turkiye; [Durmaz, Ahmet Kaan] Kadir Has Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4406689632
gdc.identifier.wos WOS:001401578800005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5047449E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords IoT
gdc.oaire.keywords Drone security
gdc.oaire.keywords Cyber security
gdc.oaire.keywords Drones
gdc.oaire.popularity 3.492158E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 10.33004814
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 2
gdc.virtual.author Durmaz, Ahmet Kaan
gdc.wos.citedcount 1
relation.isAuthorOfPublication 11454812-48b2-4ae9-9938-b84ed95e031c
relation.isAuthorOfPublication.latestForDiscovery 11454812-48b2-4ae9-9938-b84ed95e031c
relation.isOrgUnitOfPublication 01f3d407-6823-4ad3-8298-0b6a2a6e5cff
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 01f3d407-6823-4ad3-8298-0b6a2a6e5cff

Files