Optimizing Collective Building Management through a Machine Learning-based Decision Support System

dc.authorscopusid58876605000
dc.authorscopusid58876548300
dc.authorscopusid59060998300
dc.authorscopusid6507328166
dc.authorscopusid58876497000
dc.authorscopusid56329345400
dc.contributor.authorDağ, Hasan
dc.contributor.authorKiran,H.
dc.contributor.authorDogan,E.
dc.contributor.authorDag,H.
dc.contributor.authorOzyuruyen,B.
dc.contributor.authorCakar,T.
dc.date.accessioned2024-06-23T21:39:20Z
dc.date.available2024-06-23T21:39:20Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-tempGuvencli M., Apsiyon Informatics Sys. Inc., Software-Team Lead, Istanbul, Turkey; Kiran H., Apsiyon Informatics Sys. Inc., Product-Team Lead, Istanbul, Turkey; Dogan E., Apsiyon Informatics Sys. Inc., Software-Management, CPO, Istanbul, Turkey; Dag H., Kadir Has University, Informatics Management Systems, Istanbul, Turkey; Ozyuruyen B., Apsiyon Informatics Sys. Inc., R and D and Innovation Incentives Sen. Sp., Istanbul, Turkey; Cakar T., MEF University, Computer Engineering, Istanbul, Turkeyen_US
dc.description.abstractThis study presents the design, implementation, and evaluation of a Decision Support System (DSS) developed for Collective Building Management. Given the potential advantages of machine learning techniques in this domain, the research explores how these techniques can be used to improve collective building management. The dataset consists of 824,932 records and 15 attributes, after preprocessing the data to fill in missing values with the median. The random forest algorithm was chosen for model training and achieved a performance rate of 71.2%. This model can be used to optimize decision processes in collective building management. The proposed prototype is notable for its ability to automatically generate operational plans. In conclusion, machine learning-based DSSs are effective tools for collective building management. © 2023 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/IISEC59749.2023.10391049
dc.identifier.isbn979-835031803-6
dc.identifier.scopus2-s2.0-85184656384
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/IISEC59749.2023.10391049
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5858
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof4th International Informatics and Software Engineering Conference - Symposium Program, IISEC 2023 -- 4th International Informatics and Software Engineering Conference, IISEC 2023 -- 21 December 2023 through 22 December 2023 -- Ankara -- 196814en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCollective Building Managementen_US
dc.subjectData Preprocessingen_US
dc.subjectDecision Support System (DSS)en_US
dc.subjectOperational Plan Automationen_US
dc.subjectRandom Forest Algorithmen_US
dc.titleOptimizing Collective Building Management through a Machine Learning-based Decision Support Systemen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscoverye02bc683-b72e-4da4-a5db-ddebeb21e8e7

Files