Optimizing Collective Building Management Through a Machine Learning-Based Decision Support System

dc.authorscopusid 58876605000
dc.authorscopusid 58876548300
dc.authorscopusid 59060998300
dc.authorscopusid 6507328166
dc.authorscopusid 58876497000
dc.authorscopusid 56329345400
dc.contributor.author Guvencli,M.
dc.contributor.author Dağ, Hasan
dc.contributor.author Kiran,H.
dc.contributor.author Dogan,E.
dc.contributor.author Dag,H.
dc.contributor.author Ozyuruyen,B.
dc.contributor.author Cakar,T.
dc.contributor.other Management Information Systems
dc.date.accessioned 2024-06-23T21:39:20Z
dc.date.available 2024-06-23T21:39:20Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp Guvencli M., Apsiyon Informatics Sys. Inc., Software-Team Lead, Istanbul, Turkey; Kiran H., Apsiyon Informatics Sys. Inc., Product-Team Lead, Istanbul, Turkey; Dogan E., Apsiyon Informatics Sys. Inc., Software-Management, CPO, Istanbul, Turkey; Dag H., Kadir Has University, Informatics Management Systems, Istanbul, Turkey; Ozyuruyen B., Apsiyon Informatics Sys. Inc., R and D and Innovation Incentives Sen. Sp., Istanbul, Turkey; Cakar T., MEF University, Computer Engineering, Istanbul, Turkey en_US
dc.description.abstract This study presents the design, implementation, and evaluation of a Decision Support System (DSS) developed for Collective Building Management. Given the potential advantages of machine learning techniques in this domain, the research explores how these techniques can be used to improve collective building management. The dataset consists of 824,932 records and 15 attributes, after preprocessing the data to fill in missing values with the median. The random forest algorithm was chosen for model training and achieved a performance rate of 71.2%. This model can be used to optimize decision processes in collective building management. The proposed prototype is notable for its ability to automatically generate operational plans. In conclusion, machine learning-based DSSs are effective tools for collective building management. © 2023 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/IISEC59749.2023.10391049
dc.identifier.isbn 979-835031803-6
dc.identifier.scopus 2-s2.0-85184656384
dc.identifier.uri https://doi.org/10.1109/IISEC59749.2023.10391049
dc.identifier.uri https://hdl.handle.net/20.500.12469/5858
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 4th International Informatics and Software Engineering Conference - Symposium Program, IISEC 2023 -- 4th International Informatics and Software Engineering Conference, IISEC 2023 -- 21 December 2023 through 22 December 2023 -- Ankara -- 196814 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Collective Building Management en_US
dc.subject Data Preprocessing en_US
dc.subject Decision Support System (DSS) en_US
dc.subject Operational Plan Automation en_US
dc.subject Random Forest Algorithm en_US
dc.title Optimizing Collective Building Management Through a Machine Learning-Based Decision Support System en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files