Deep Q-Learning Technique for Offloading Offline/Online Computation in Blockchain-Enabled Green Iot-Edge Scenarios

dc.contributor.author Heidari, Arash
dc.contributor.author Jamali, Mohammad Ali Jabraeil
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Akbarpour, Shahin
dc.date.accessioned 2023-10-19T15:12:02Z
dc.date.available 2023-10-19T15:12:02Z
dc.date.issued 2022
dc.description.abstract The number of Internet of Things (IoT)-related innovations has recently increased exponentially, with numerous IoT objects being invented one after the other. Where and how many resources can be transferred to carry out tasks or applications is known as computation offloading. Transferring resource-intensive computational tasks to a different external device in the network, such as a cloud, fog, or edge platform, is the strategy used in the IoT environment. Besides, offloading is one of the key technological enablers of the IoT, as it helps overcome the resource limitations of individual objects. One of the major shortcomings of previous research is the lack of an integrated offloading framework that can operate in an offline/online environment while preserving security. This paper offers a new deep Q-learning approach to address the IoT-edge offloading enabled blockchain problem using the Markov Decision Process (MDP). There is a substantial gap in the secure online/offline offloading systems in terms of security, and no work has been published in this arena thus far. This system can be used online and offline while maintaining privacy and security. The proposed method employs the Post Decision State (PDS) mechanism in online mode. Additionally, we integrate edge/cloud platforms into IoT blockchain-enabled networks to encourage the computational potential of IoT devices. This system can enable safe and secure cloud/edge/IoT offloading by employing blockchain. In this system, the master controller, offloading decision, block size, and processing nodes may be dynamically chosen and changed to reduce device energy consumption and cost. TensorFlow and Cooja's simulation results demonstrated that the method could dramatically boost system efficiency relative to existing schemes. The findings showed that the method beats four benchmarks in terms of cost by 6.6%, computational overhead by 7.1%, energy use by 7.9%, task failure rate by 6.2%, and latency by 5.5% on average. en_US
dc.identifier.doi 10.3390/app12168232 en_US
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85137331418 en_US
dc.identifier.uri https://doi.org/10.3390/app12168232
dc.identifier.uri https://hdl.handle.net/20.500.12469/5323
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Applied Sciences-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Resource-Allocation
dc.subject Optimization
dc.subject Identification
dc.subject Resource-Allocation En_Us
dc.subject Aggregation
dc.subject Optimization En_Us
dc.subject Identification En_Us
dc.subject Networks
dc.subject Aggregation En_Us
dc.subject Aware
dc.subject Blockchain en_US
dc.subject Networks En_Us
dc.subject deep learning en_US
dc.subject IoT en_US
dc.subject Aware En_Us
dc.subject Offloading en_US
dc.subject Smart
dc.subject QoS en_US
dc.subject Smart En_Us
dc.subject privacy en_US
dc.title Deep Q-Learning Technique for Offloading Offline/Online Computation in Blockchain-Enabled Green Iot-Edge Scenarios en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.id Jabraeil Jamali, Mohammad Ali/0000-0001-7687-5469
gdc.author.id Jafari Navimipour, Nima/0000-0002-5514-5536
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.author.wosid Jabraeil Jamali, Mohammad Ali/I-8032-2019
gdc.author.wosid Jafari Navimipour, Nima/AAF-5662-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.departmenttemp [Heidari, Arash; Jamali, Mohammad Ali Jabraeil; Akbarpour, Shahin] Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar 5381637181, Iran; [Navimipour, Nima Jafari] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz 5157944533, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34083 Istanbul, Turkey en_US
gdc.description.issue 16 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 8232
gdc.description.volume 12 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4292258979
gdc.identifier.wos WOS:000846970600001 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 53.0
gdc.oaire.influence 5.797065E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Optimization
gdc.oaire.keywords Identification
gdc.oaire.keywords IoT
gdc.oaire.keywords Technology
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords QC1-999
gdc.oaire.keywords QoS
gdc.oaire.keywords privacy
gdc.oaire.keywords Aggregation
gdc.oaire.keywords Blockchain
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords QD1-999
gdc.oaire.keywords Offloading
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords Blockchain; deep learning; IoT; Offloading; QoS; privacy
gdc.oaire.keywords deep learning
gdc.oaire.keywords Aware
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Resource-Allocation
gdc.oaire.keywords Smart
gdc.oaire.keywords Networks
gdc.oaire.keywords TA1-2040
gdc.oaire.popularity 4.4027804E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 11.56905422
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 38
gdc.plumx.crossrefcites 52
gdc.plumx.mendeley 24
gdc.plumx.scopuscites 53
gdc.scopus.citedcount 54
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 49
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5323.pdf
Size:
6.14 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text