In Silico Identification of Critical Proteins Associated With Learning Process and Immune System for Down Syndrome

dc.contributor.author Kulan, Handan
dc.contributor.author Dağ, Tamer
dc.date.accessioned 2019-06-27T08:02:03Z
dc.date.available 2019-06-27T08:02:03Z
dc.date.issued 2019
dc.description.abstract Understanding expression levels of proteins and their interactions is a key factor to diagnose and explain the Down syndrome which can be considered as the most prevalent reason of intellectual disability in human beings. In the previous studies the expression levels of 77 proteins obtained from normal genotype control mice and from trisomic Ts65Dn mice have been analyzed after training in contextual fear conditioning with and without injection of the memantine drug using statistical methods and machine learning techniques. Recent studies have also pointed out that there may be a linkage between the Down syndrome and the immune system. Thus the research presented in this paper aim at in silico identification of proteins which are significant to the learning process and the immune system and to derive the most accurate model for classification of mice. In this paper the features are selected by implementing forward feature selection method after preprocessing step of the dataset. Later deep neural network gradient boosting tree support vector machine and random forest classification methods are implemented to identify the accuracy. It is observed that the selected feature subsets not only yield higher accuracy classification results but also are composed of protein responses which are important for the learning and memory process and the immune system. en_US]
dc.identifier.doi 10.1371/journal.pone.0210954 en_US
dc.identifier.issn 1932-6203
dc.identifier.scopus 2-s2.0-85060622403 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/537
dc.identifier.uri https://doi.org/10.1371/journal.pone.0210954
dc.language.iso en en_US
dc.publisher Public Library Science en_US
dc.relation.ispartof PLOS ONE
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title In Silico Identification of Critical Proteins Associated With Learning Process and Immune System for Down Syndrome en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dağ, Tamer en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.issue 1
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage e0210954
gdc.description.volume 14 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2911443174
gdc.identifier.pmid 30689644 en_US
gdc.identifier.wos WOS:000457041800015 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.660181E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Support Vector Machine
gdc.oaire.keywords Science
gdc.oaire.keywords Q
gdc.oaire.keywords R
gdc.oaire.keywords Gene Expression
gdc.oaire.keywords Bayes Theorem
gdc.oaire.keywords Nerve Tissue Proteins
gdc.oaire.keywords Trisomy
gdc.oaire.keywords Disease Models, Animal
gdc.oaire.keywords Immune System Phenomena
gdc.oaire.keywords Mice
gdc.oaire.keywords N/A
gdc.oaire.keywords Memantine
gdc.oaire.keywords Medicine
gdc.oaire.keywords Animals
gdc.oaire.keywords Humans
gdc.oaire.keywords Learning
gdc.oaire.keywords Computer Simulation
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Down Syndrome
gdc.oaire.keywords Research Article
gdc.oaire.popularity 4.300475E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 0.27626919
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 4
gdc.plumx.mendeley 26
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 5
gdc.relation.journal Plos One
gdc.scopus.citedcount 5
gdc.virtual.author Dağ, Tamer
gdc.wos.citedcount 3
relation.isAuthorOfPublication 6e6ae480-b76e-48a0-a543-13ef44f9d802
relation.isAuthorOfPublication.latestForDiscovery 6e6ae480-b76e-48a0-a543-13ef44f9d802
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
In silico identification of critical proteins associated with learning process and immune system for Down syndrome.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description: