Data Augmentation With In-Context Learning and Comparative Evaluation in Math Word Problem Solving

dc.authorscopusid 57215312808
dc.authorscopusid 55664402200
dc.contributor.author Yigit,G.
dc.contributor.author Yiğit, Gülsüm
dc.contributor.author Amasyali,M.F.
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-06-23T21:39:23Z
dc.date.available 2024-06-23T21:39:23Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp Yigit G., Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey, Department of Computer Engineering, Kadir Has University, Istanbul, Turkey; Amasyali M.F., Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey en_US
dc.description.abstract Math Word Problem (MWP) solving presents a challenging task in Natural Language Processing (NLP). This study aims to provide MWP solvers with a more diverse training set, ultimately improving their ability to solve various math problems. We propose several methods for data augmentation by modifying the problem texts and equations, such as synonym replacement, rule-based: question replacement, and rule based: reversing question methodologies over two English MWP datasets. This study extends by introducing a new in-context learning augmentation method, employing the Llama-7b language model. This approach involves instruction-based prompting for rephrasing the math problem texts. Performance evaluations are conducted on 9 baseline models, revealing that augmentation methods outperform baseline models. Moreover, concatenating examples generated by various augmentation methods further improves performance. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (120E100); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s42979-024-02853-x
dc.identifier.issn 2662-995X
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85191812688
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s42979-024-02853-x
dc.identifier.uri https://hdl.handle.net/20.500.12469/5872
dc.identifier.volume 5 en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof SN Computer Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Data augmentation en_US
dc.subject In-context learning en_US
dc.subject Llama-7b en_US
dc.subject Math word problem solving en_US
dc.subject Question answering en_US
dc.title Data Augmentation With In-Context Learning and Comparative Evaluation in Math Word Problem Solving en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files