Enhancing Cybersecurity in Critical Infrastructure: Utilizing Random Forest Ai Model for Threat Detection

dc.authorscopusid59206867000
dc.authorscopusid6602924425
dc.contributor.authorJamil, M.
dc.contributor.authorCreutzburg, R.
dc.date.accessioned2025-04-15T23:42:54Z
dc.date.available2025-04-15T23:42:54Z
dc.date.issued2025
dc.departmentKadir Has Universityen_US
dc.department-temp[Jamil M.] Kadir Has University, Kadir Has Cd, Cibali, Istanbul, Fatih, 34083, Turkey; [Creutzburg R.] SRH Berlin University of Applied Sciences, Berlin School of Technology, Ernst-Reuter-Platz 10, Berlin, 10587, Germany, Department of Informatics and Media, Technische Hochschule Brandenburg, Magdeburger Str. 50, Brandenburg, 14776, Germanyen_US
dc.description.abstractSecuring critical infrastructures is essential to reducing risks in the rapidly evolving digital world. Traditional manual techniques of threat identification during cyberattacks are becoming less and less effective due to the limitations of human labor and the necessity for prompt responses. AI-based threat detection is a powerful solution that uses AI to identify, classify, and mitigate the effects of cyberattacks. Over the past five years, selecting appropriate AI and machine learning algorithms to evaluate threats in critical infrastructure protection has grown to be a significant challenge. Moreover, AI-driven threat detection must be seamlessly integrated into critical infrastructure cybersecurity. This work proposes a Supervised Learning model, a type of machine learning where the algorithm is trained on a labeled dataset, called the Random Forest algorithm for threat detection. The procedure entails thorough preprocessing and data accumulation from the NSL-KDD vulnerabilities database. The Random Forest model, known for its reliability, analyzes refined data and is skilled in identifying current risks and forecasting future ones. The study showcases the high accuracy and reliability of the model, with an accuracy score of 99.90% and a false positive rate of less than 15% for every assault category. These results underscore the effectiveness of the research in producing a reliable and accurate cybersecurity model. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.en_US
dc.description.sponsorshipEuropean Commission, EC; Erasmus+, (101082683); Erasmus+en_US
dc.identifier.doi10.1007/978-3-031-85363-0_24
dc.identifier.endpage398en_US
dc.identifier.isbn9783031853623
dc.identifier.issn2367-3370
dc.identifier.scopus2-s2.0-105000878737
dc.identifier.scopusqualityQ4
dc.identifier.startpage388en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-85363-0_24
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7284
dc.identifier.volume1284 LNNSen_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systems -- Future of Information and Communication Conference, FICC 2025 -- 28 April 2025 through 29 April 2025 -- Berlin -- 328249en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectCritical Infrastructureen_US
dc.subjectCyber Securityen_US
dc.subjectRandom Foresten_US
dc.subjectThreat Detectionen_US
dc.titleEnhancing Cybersecurity in Critical Infrastructure: Utilizing Random Forest Ai Model for Threat Detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files