A Novel Blockchain-Based Deepfake Detection Method Using Federated and Deep Learning Models

dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Dag, Hasan
dc.contributor.author Talebi, Samira
dc.contributor.author Unal, Mehmet
dc.contributor.other Computer Engineering
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:37:27Z
dc.date.available 2024-06-23T21:37:27Z
dc.date.issued 2024
dc.description Unal, Mehmet/0000-0003-1243-153X; Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract In recent years, the proliferation of deep learning (DL) techniques has given rise to a significant challenge in the form of deepfake videos, posing a grave threat to the authenticity of media content. With the rapid advancement of DL technology, the creation of convincingly realistic deepfake videos has become increasingly prevalent, raising serious concerns about the potential misuse of such content. Deepfakes have the potential to undermine trust in visual media, with implications for fields as diverse as journalism, entertainment, and security. This study presents an innovative solution by harnessing blockchain-based federated learning (FL) to address this issue, focusing on preserving data source anonymity. The approach combines the strengths of SegCaps and convolutional neural network (CNN) methods for improved image feature extraction, followed by capsule network (CN) training to enhance generalization. A novel data normalization technique is introduced to tackle data heterogeneity stemming from diverse global data sources. Moreover, transfer learning (TL) and preprocessing methods are deployed to elevate DL performance. These efforts culminate in collaborative global model training zfacilitated by blockchain and FL while maintaining the utmost confidentiality of data sources. The effectiveness of our methodology is rigorously tested and validated through extensive experiments. These experiments reveal a substantial improvement in accuracy, with an impressive average increase of 6.6% compared to six benchmark models. Furthermore, our approach demonstrates a 5.1% enhancement in the area under the curve (AUC) metric, underscoring its ability to outperform existing detection methods. These results substantiate the effectiveness of our proposed solution in countering the proliferation of deepfake content. In conclusion, our innovative approach represents a promising avenue for advancing deepfake detection. By leveraging existing data resources and the power of FL and blockchain technology, we address a critical need for media authenticity and security. As the threat of deepfake videos continues to grow, our comprehensive solution provides an effective means to protect the integrity and trustworthiness of visual media, with far-reaching implications for both industry and society. This work stands as a significant step toward countering the deepfake menace and preserving the authenticity of visual content in a rapidly evolving digital landscape. en_US
dc.description.sponsorship Kadir Has University en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1007/s12559-024-10255-7
dc.identifier.issn 1866-9956
dc.identifier.issn 1866-9964
dc.identifier.scopus 2-s2.0-85183091123
dc.identifier.uri https://doi.org/10.1007/s12559-024-10255-7
dc.identifier.uri https://hdl.handle.net/20.500.12469/5721
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Cognitive Computation
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Blockchain en_US
dc.subject Convolutional neural network en_US
dc.subject Deepfake en_US
dc.subject Transfer learning en_US
dc.subject QoS en_US
dc.subject Privacy en_US
dc.subject Federated learning en_US
dc.title A Novel Blockchain-Based Deepfake Detection Method Using Federated and Deep Learning Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Unal, Mehmet/0000-0003-1243-153X
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.institutional Dağ, Hasan
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.scopusid 57217424609
gdc.author.scopusid 55897274300
gdc.author.scopusid 6507328166
gdc.author.scopusid 58564751100
gdc.author.scopusid 57254381700
gdc.author.wosid Unal, Mehmet/W-2804-2018
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Heidari, Arash] Halic Univ, Dept Software Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Yunlin 64002, Taiwan; [Dag, Hasan] Kadir Has Univ, Dept Informat Technol, Istanbul, Turkiye; [Talebi, Samira] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX USA; [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkiye en_US
gdc.description.endpage 1091 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1073 en_US
gdc.description.volume 16 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4391262065
gdc.identifier.wos WOS:001148512000002
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 84.0
gdc.oaire.influence 9.5766195E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.566143E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 39.722
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 37
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 109
gdc.plumx.newscount 2
gdc.plumx.scopuscites 84
gdc.scopus.citedcount 85
gdc.wos.citedcount 61
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files