An ultra efficient 2:1 multiplexer using bar-shaped pattern in atomic silicon dangling bond technology

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

As CMOS technology approaches its physical and technical limits, alternative technologies such as nanotechnology or quantum computing are needed to overcome the challenges of lithography, transistor scaling, interconnects, and miniaturization. This article introduces a novel nanotechnology that uses atomic-scale silicon dangling bonds (ASDB) to create high-performance, low-power, nanoscale logic circuits. DBs are atoms that can form basic logic gates on a silicon surface using a scanning tunneling microscope device. ASDB can also be an alternative to the existing complementary metal oxide semiconductor (CMOS) technology. The article also proposes a new bar-shaped pattern to design gates and logic circuits with ASDB nano tecnolgoy. The bar-shaped pattern improves the reliability of the output, reduces the area and power consumption, and solves the problem of interatomic energy effects of ASDB. The article demonstrates the efficiency of the bar-shaped pattern by implementing two-input gates such as AND, NAND, OR, NOR, XOR, XNOR, and a 2:1 multiplexer with ASDB. The article also uses a powerful tool called SiQAD to simulate and verify the performance of the proposed structures with ASDB. According to the simulation results, the proposed logic gates are more energy efficient, stable, and compact than the previous structures. They consume 35% and 24.34% less energy and have 14.18% more stability, respectively.

Description

Keywords

Dangling bonds (DBs), Multiplexer, Atomic silicon dangling bond (ASDB), Scanning tunneling microscope (STM), CMOS

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

Q2

Source

Volume

Issue

Start Page

End Page