Vcc-Bps: Vertical Collaborative Clustering Using Bit Plane Slicing
| dc.contributor.author | Ishaq, Waqar | |
| dc.contributor.author | Büyükkaya, Eliya | |
| dc.contributor.author | Ali, Mushtaq | |
| dc.contributor.author | Khan, Zakir | |
| dc.date | 2021-01 | |
| dc.date.accessioned | 2021-04-23T15:23:11Z | |
| dc.date.available | 2021-04-23T15:23:11Z | |
| dc.date.issued | 2021 | |
| dc.date.issued | 2021 | |
| dc.description.abstract | The vertical collaborative clustering aims to unravel the hidden structure of data (similarity) among different sites, which will help data owners to make a smart decision without sharing actual data. For example, various hospitals located in different regions want to investigate the structure of common disease among people of different populations to identify latent causes without sharing actual data with other hospitals. Similarly, a chain of regional educational institutions wants to evaluate their students' performance belonging to different regions based on common latent constructs. The available methods used for finding hidden structures are complicated and biased to perform collaboration in measuring similarity among multiple sites. This study proposes vertical collaborative clustering using a bit plane slicing approach (VCC-BPS), which is simple and unique with improved accuracy, manages collaboration among various data sites. The VCC-BPS transforms data from input space to code space, capturing maximum similarity locally and collaboratively at a particular bit plane. The findings of this study highlight the significance of those particular bits which fit the model in correctly classifying class labels locally and collaboratively. Thenceforth, the data owner appraises local and collaborative results to reach a better decision. The VCC-BPS is validated by Geyser, Skin and Iris datasets and its results are compared with the composite dataset. It is found that the VCC-BPS outperforms existing solutions with improved accuracy in term of purity and Davies-Boulding index to manage collaboration among different data sites. It also performs data compression by representing a large number of observations with a small number of data symbols. | en_US |
| dc.identifier.doi | 10.1371/journal.pone.0244691 | en_US |
| dc.identifier.issn | 1932-6203 | |
| dc.identifier.issn | 1932-6203 | en_US |
| dc.identifier.scopus | 2-s2.0-85099895227 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/3994 | |
| dc.language.iso | en | en_US |
| dc.publisher | PUBLIC LIBRARY SCIENCE | en_US |
| dc.relation.ispartof | PLOS ONE | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | Vcc-Bps: Vertical Collaborative Clustering Using Bit Plane Slicing | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ishaq, Waqar | en_US |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | e0244691 | |
| gdc.description.volume | 16 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3120263438 | |
| gdc.identifier.pmid | 33428649 | en_US |
| gdc.identifier.wos | WOS:000630036100020 | en_US |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Science | |
| gdc.oaire.keywords | Datasets as Topic | |
| gdc.oaire.keywords | Space (punctuation) | |
| gdc.oaire.keywords | Clustering Algorithms | |
| gdc.oaire.keywords | Cluster analysis | |
| gdc.oaire.keywords | Artificial Intelligence | |
| gdc.oaire.keywords | Document Clustering | |
| gdc.oaire.keywords | Image (mathematics) | |
| gdc.oaire.keywords | Cluster Analysis | |
| gdc.oaire.keywords | Humans | |
| gdc.oaire.keywords | Similarity (geometry) | |
| gdc.oaire.keywords | Adaptation to Concept Drift in Data Streams | |
| gdc.oaire.keywords | Data mining | |
| gdc.oaire.keywords | Ensemble Learning | |
| gdc.oaire.keywords | Data Clustering Techniques and Algorithms | |
| gdc.oaire.keywords | Q | |
| gdc.oaire.keywords | R | |
| gdc.oaire.keywords | Statistical and Nonlinear Physics | |
| gdc.oaire.keywords | Semi-supervised Clustering | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Operating system | |
| gdc.oaire.keywords | N/A | |
| gdc.oaire.keywords | Physics and Astronomy | |
| gdc.oaire.keywords | Multivariate Analysis | |
| gdc.oaire.keywords | Computer Science | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Medicine | |
| gdc.oaire.keywords | Statistical Mechanics of Complex Networks | |
| gdc.oaire.keywords | Algorithms | |
| gdc.oaire.keywords | Density-based Clustering | |
| gdc.oaire.keywords | Research Article | |
| gdc.oaire.popularity | 1.5483943E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.01 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.relation.journal | PLOS ONE | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Büyükkaya, Eliya | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | fbc6008d-9797-4687-8f0a-43c963272c4a | |
| relation.isAuthorOfPublication.latestForDiscovery | fbc6008d-9797-4687-8f0a-43c963272c4a | |
| relation.isOrgUnitOfPublication | c10ffc80-6da5-4b86-b481-aae660325ae5 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | c10ffc80-6da5-4b86-b481-aae660325ae5 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- journal.pone.0244691.pdf
- Size:
- 2.74 MB
- Format:
- Adobe Portable Document Format
- Description:
