Vcc-Bps: Vertical Collaborative Clustering Using Bit Plane Slicing

dc.contributor.author Ishaq, Waqar
dc.contributor.author Büyükkaya, Eliya
dc.contributor.author Ali, Mushtaq
dc.contributor.author Khan, Zakir
dc.date 2021-01
dc.date.accessioned 2021-04-23T15:23:11Z
dc.date.available 2021-04-23T15:23:11Z
dc.date.issued 2021
dc.date.issued 2021
dc.description.abstract The vertical collaborative clustering aims to unravel the hidden structure of data (similarity) among different sites, which will help data owners to make a smart decision without sharing actual data. For example, various hospitals located in different regions want to investigate the structure of common disease among people of different populations to identify latent causes without sharing actual data with other hospitals. Similarly, a chain of regional educational institutions wants to evaluate their students' performance belonging to different regions based on common latent constructs. The available methods used for finding hidden structures are complicated and biased to perform collaboration in measuring similarity among multiple sites. This study proposes vertical collaborative clustering using a bit plane slicing approach (VCC-BPS), which is simple and unique with improved accuracy, manages collaboration among various data sites. The VCC-BPS transforms data from input space to code space, capturing maximum similarity locally and collaboratively at a particular bit plane. The findings of this study highlight the significance of those particular bits which fit the model in correctly classifying class labels locally and collaboratively. Thenceforth, the data owner appraises local and collaborative results to reach a better decision. The VCC-BPS is validated by Geyser, Skin and Iris datasets and its results are compared with the composite dataset. It is found that the VCC-BPS outperforms existing solutions with improved accuracy in term of purity and Davies-Boulding index to manage collaboration among different data sites. It also performs data compression by representing a large number of observations with a small number of data symbols. en_US
dc.identifier.doi 10.1371/journal.pone.0244691 en_US
dc.identifier.issn 1932-6203
dc.identifier.issn 1932-6203 en_US
dc.identifier.scopus 2-s2.0-85099895227 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3994
dc.language.iso en en_US
dc.publisher PUBLIC LIBRARY SCIENCE en_US
dc.relation.ispartof PLOS ONE
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Vcc-Bps: Vertical Collaborative Clustering Using Bit Plane Slicing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ishaq, Waqar en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage e0244691
gdc.description.volume 16 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3120263438
gdc.identifier.pmid 33428649 en_US
gdc.identifier.wos WOS:000630036100020 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords Science
gdc.oaire.keywords Datasets as Topic
gdc.oaire.keywords Space (punctuation)
gdc.oaire.keywords Clustering Algorithms
gdc.oaire.keywords Cluster analysis
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Document Clustering
gdc.oaire.keywords Image (mathematics)
gdc.oaire.keywords Cluster Analysis
gdc.oaire.keywords Humans
gdc.oaire.keywords Similarity (geometry)
gdc.oaire.keywords Adaptation to Concept Drift in Data Streams
gdc.oaire.keywords Data mining
gdc.oaire.keywords Ensemble Learning
gdc.oaire.keywords Data Clustering Techniques and Algorithms
gdc.oaire.keywords Q
gdc.oaire.keywords R
gdc.oaire.keywords Statistical and Nonlinear Physics
gdc.oaire.keywords Semi-supervised Clustering
gdc.oaire.keywords Computer science
gdc.oaire.keywords Operating system
gdc.oaire.keywords N/A
gdc.oaire.keywords Physics and Astronomy
gdc.oaire.keywords Multivariate Analysis
gdc.oaire.keywords Computer Science
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Medicine
gdc.oaire.keywords Statistical Mechanics of Complex Networks
gdc.oaire.keywords Algorithms
gdc.oaire.keywords Density-based Clustering
gdc.oaire.keywords Research Article
gdc.oaire.popularity 1.5483943E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.01
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 1
gdc.relation.journal PLOS ONE
gdc.scopus.citedcount 1
gdc.virtual.author Büyükkaya, Eliya
gdc.wos.citedcount 0
relation.isAuthorOfPublication fbc6008d-9797-4687-8f0a-43c963272c4a
relation.isAuthorOfPublication.latestForDiscovery fbc6008d-9797-4687-8f0a-43c963272c4a
relation.isOrgUnitOfPublication c10ffc80-6da5-4b86-b481-aae660325ae5
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery c10ffc80-6da5-4b86-b481-aae660325ae5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
journal.pone.0244691.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description: