Multiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimization

dc.authorscopusid54891556200
dc.authorscopusid59482022600
dc.contributor.authorStroppa, Fabio
dc.contributor.authorAstar, Ahmet
dc.date.accessioned2025-03-15T20:06:52Z
dc.date.available2025-03-15T20:06:52Z
dc.date.issued2025
dc.departmentKadir Has Universityen_US
dc.department-temp[Stroppa, Fabio; Astar, Ahmet] Kadir Has Univ, Comp Engn Dept, TR-34083 Istanbul, Turkiyeen_US
dc.description.abstractThe main challenge of multimodal optimization problems is identifying multiple peaks with high accuracy in multidimensional search spaces with irregular landscapes. This work proposes the Multiple Global Peaks Big Bang-Big Crunch (MGP-BBBC) algorithm, which addresses the challenge of multimodal optimization problems by introducing a specialized mechanism for each operator. The algorithm expands the Big Bang-Big Crunch algorithm, a state-of-the-art metaheuristic inspired by the universe's evolution. Specifically, MGP-BBBC groups the best individuals of the population into cluster-based centers of mass and then expands them with a progressively lower disturbance to guarantee convergence. During this process, it (i) applies a distance-based filtering to remove unnecessary elites such that the ones on smaller peaks are not lost, (ii) promotes isolated individuals based on their niche count after clustering, and (iii) balances exploration and exploitation during offspring generation to target specific accuracy levels. Experimental results on twenty multimodal benchmark test functions show that MGP-BBBC generally performs better or competitively with respect to other state-of-the-art multimodal optimizers.en_US
dc.description.sponsorshipTrkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumuen_US
dc.description.sponsorshipThe authors would like to thank Dr. Ali Ahrari for providing relevant insights on algorithm comparisons. We thank Ozan Nurcan, Emir Ozen, Erk Demirel, and Ozan Kutlar for helping us run experiments. Lastly, we would like to thank Emre Ozel for allowing us to use 121 computers in the Kadir Has University's Computer Labs for parallel computation: it took us only three weeks instead of three years.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1007/s12065-025-01016-y
dc.identifier.issn1864-5909
dc.identifier.issn1864-5917
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85219219356
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s12065-025-01016-y
dc.identifier.volume18en_US
dc.identifier.wosWOS:001414984700001
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBig Bang-Big Crunch Algorithm (Bbbc)en_US
dc.subjectMultiple Global Peaks Big Bang-Big Crunch Algorithm (Mgp-Bbbc)en_US
dc.subjectClusteringen_US
dc.subjectMultimodal Optimizationen_US
dc.titleMultiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files