Multiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimization

dc.authorscopusid 54891556200
dc.authorscopusid 59482022600
dc.contributor.author Stroppa, Fabıo
dc.contributor.author Astar, Ahmet
dc.contributor.other Computer Engineering
dc.date.accessioned 2025-03-15T20:06:52Z
dc.date.available 2025-03-15T20:06:52Z
dc.date.issued 2025
dc.department Kadir Has University en_US
dc.department-temp [Stroppa, Fabio; Astar, Ahmet] Kadir Has Univ, Comp Engn Dept, TR-34083 Istanbul, Turkiye en_US
dc.description.abstract The main challenge of multimodal optimization problems is identifying multiple peaks with high accuracy in multidimensional search spaces with irregular landscapes. This work proposes the Multiple Global Peaks Big Bang-Big Crunch (MGP-BBBC) algorithm, which addresses the challenge of multimodal optimization problems by introducing a specialized mechanism for each operator. The algorithm expands the Big Bang-Big Crunch algorithm, a state-of-the-art metaheuristic inspired by the universe's evolution. Specifically, MGP-BBBC groups the best individuals of the population into cluster-based centers of mass and then expands them with a progressively lower disturbance to guarantee convergence. During this process, it (i) applies a distance-based filtering to remove unnecessary elites such that the ones on smaller peaks are not lost, (ii) promotes isolated individuals based on their niche count after clustering, and (iii) balances exploration and exploitation during offspring generation to target specific accuracy levels. Experimental results on twenty multimodal benchmark test functions show that MGP-BBBC generally performs better or competitively with respect to other state-of-the-art multimodal optimizers. en_US
dc.description.sponsorship Trkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumu en_US
dc.description.sponsorship The authors would like to thank Dr. Ali Ahrari for providing relevant insights on algorithm comparisons. We thank Ozan Nurcan, Emir Ozen, Erk Demirel, and Ozan Kutlar for helping us run experiments. Lastly, we would like to thank Emre Ozel for allowing us to use 121 computers in the Kadir Has University's Computer Labs for parallel computation: it took us only three weeks instead of three years. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1007/s12065-025-01016-y
dc.identifier.issn 1864-5909
dc.identifier.issn 1864-5917
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85219219356
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s12065-025-01016-y
dc.identifier.volume 18 en_US
dc.identifier.wos WOS:001414984700001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Big Bang-Big Crunch Algorithm (Bbbc) en_US
dc.subject Multiple Global Peaks Big Bang-Big Crunch Algorithm (Mgp-Bbbc) en_US
dc.subject Clustering en_US
dc.subject Multimodal Optimization en_US
dc.title Multiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isAuthorOfPublication.latestForDiscovery f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files