Multiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimization
dc.authorscopusid | 54891556200 | |
dc.authorscopusid | 59482022600 | |
dc.contributor.author | Stroppa, Fabio | |
dc.contributor.author | Astar, Ahmet | |
dc.date.accessioned | 2025-03-15T20:06:52Z | |
dc.date.available | 2025-03-15T20:06:52Z | |
dc.date.issued | 2025 | |
dc.department | Kadir Has University | en_US |
dc.department-temp | [Stroppa, Fabio; Astar, Ahmet] Kadir Has Univ, Comp Engn Dept, TR-34083 Istanbul, Turkiye | en_US |
dc.description.abstract | The main challenge of multimodal optimization problems is identifying multiple peaks with high accuracy in multidimensional search spaces with irregular landscapes. This work proposes the Multiple Global Peaks Big Bang-Big Crunch (MGP-BBBC) algorithm, which addresses the challenge of multimodal optimization problems by introducing a specialized mechanism for each operator. The algorithm expands the Big Bang-Big Crunch algorithm, a state-of-the-art metaheuristic inspired by the universe's evolution. Specifically, MGP-BBBC groups the best individuals of the population into cluster-based centers of mass and then expands them with a progressively lower disturbance to guarantee convergence. During this process, it (i) applies a distance-based filtering to remove unnecessary elites such that the ones on smaller peaks are not lost, (ii) promotes isolated individuals based on their niche count after clustering, and (iii) balances exploration and exploitation during offspring generation to target specific accuracy levels. Experimental results on twenty multimodal benchmark test functions show that MGP-BBBC generally performs better or competitively with respect to other state-of-the-art multimodal optimizers. | en_US |
dc.description.sponsorship | Trkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumu | en_US |
dc.description.sponsorship | The authors would like to thank Dr. Ali Ahrari for providing relevant insights on algorithm comparisons. We thank Ozan Nurcan, Emir Ozen, Erk Demirel, and Ozan Kutlar for helping us run experiments. Lastly, we would like to thank Emre Ozel for allowing us to use 121 computers in the Kadir Has University's Computer Labs for parallel computation: it took us only three weeks instead of three years. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.1007/s12065-025-01016-y | |
dc.identifier.issn | 1864-5909 | |
dc.identifier.issn | 1864-5917 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85219219356 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s12065-025-01016-y | |
dc.identifier.volume | 18 | en_US |
dc.identifier.wos | WOS:001414984700001 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Big Bang-Big Crunch Algorithm (Bbbc) | en_US |
dc.subject | Multiple Global Peaks Big Bang-Big Crunch Algorithm (Mgp-Bbbc) | en_US |
dc.subject | Clustering | en_US |
dc.subject | Multimodal Optimization | en_US |
dc.title | Multiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimization | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |