Differentiating Functional Connectivity Patterns in Adhd and Autism Among the Young People: a Machine Learning Solution

dc.contributor.author Sutcubasi, Bernis
dc.contributor.author Balli, Tugce
dc.contributor.author Roeyers, Herbert
dc.contributor.author Wiersema, Jan R.
dc.contributor.author Camkerten, Sami
dc.contributor.author Ozturk, Ozan Cem
dc.contributor.author Sonuga-Barke, Edmund
dc.date.accessioned 2025-03-15T20:06:56Z
dc.date.available 2025-03-15T20:06:56Z
dc.date.issued 2025
dc.description.abstract Objective: ADHD and autism are complex and frequently co-occurring neurodevelopmental conditions with shared etiological and pathophysiological elements. In this paper, we attempt to differentiate these conditions among the young people in terms of intrinsic patterns of brain connectivity revealed during resting state using machine learning approaches. We had two key objectives: (a) to determine the extent to which ADHD and autism could be effectively distinguished via machine learning from one another on this basis and (b) to identify the brain networks differentially implicated in the two conditions.Method: Data from two publicly available resting-state functional magnetic resonance imaging (fMRI) resources-Autism Brain Imaging Data Exchange (ABIDE) and the ADHD-200 Consortium-were analyzed. A total of 330 participants (65 females and 265 males; mean age = 11.6 years), comprising equal subgroups of 110 participants each for ADHD, autism, and healthy controls (HC), were selected from the data sets ensuring data quality and the exclusion of comorbidities. We identified region-to-region connectivity values, which were subsequently employed as inputs to the linear discriminant analysis algorithm.Results: Machine learning models provided strong differentiation between connectivity patterns in participants with ADHD and autism-with the highest accuracy of 85%. Predominantly frontoparietal network alterations in connectivity discriminate ADHD individuals from autism and neurotypical group. Networks contributing to discrimination of autistic individuals from neurotypical group were more heterogeneous. These included language, salience, and frontoparietal networks.Conclusion: These results contribute to our understanding of the distinct neural signatures underlying ADHD and autism in terms of intrinsic patterns of brain connectivity. The high level of discriminability between ADHD and autism, highlights the potential role of brain based metrics in supporting differential diagnostics. en_US
dc.identifier.doi 10.1177/10870547251315230
dc.identifier.issn 1087-0547
dc.identifier.issn 1557-1246
dc.identifier.scopus 2-s2.0-85218260570
dc.identifier.uri https://doi.org/10.1177/10870547251315230
dc.language.iso en en_US
dc.publisher Sage Publications inc en_US
dc.relation.ispartof Journal of Attention Disorders
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adhd en_US
dc.subject Autism en_US
dc.subject Functional Connectivity en_US
dc.subject Resting State Fmri en_US
dc.subject Machine Learning en_US
dc.title Differentiating Functional Connectivity Patterns in Adhd and Autism Among the Young People: a Machine Learning Solution en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57202689821
gdc.author.scopusid 24823826600
gdc.author.scopusid 6701645061
gdc.author.scopusid 35218547100
gdc.author.scopusid 59564699500
gdc.author.scopusid 57218099942
gdc.author.scopusid 16643227200
gdc.author.wosid Roeyers, Herbert/A-5557-2018
gdc.author.wosid Wiersema, Jan/Lqj-3680-2024
gdc.author.wosid Sonuga-Barke, Edmund/D-9137-2011
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Sutcubasi, Bernis; Ozturk, Ozan Cem] Acibadem Univ, Psychol, Istanbul, Turkiye; [Balli, Tugce] Kadir Has Univ, Istanbul, Turkiye; [Roeyers, Herbert; Wiersema, Jan R.] Univ Ghent, Clin Psychol, Ghent, Belgium; [Camkerten, Sami] Istinye Univ, Neurosci, Istanbul, Turkiye; [Metin, Baris] Uskudar Univ, Istanbul, Turkiye; [Sonuga-Barke, Edmund] Kings Coll London, London, England en_US
gdc.description.endpage 499 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 486 en_US
gdc.description.volume 29 en_US
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4407338008
gdc.identifier.pmid 39927595
gdc.identifier.wos WOS:001416735500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.517886E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Male
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Adolescent
gdc.oaire.keywords Attention Deficit Disorder with Hyperactivity
gdc.oaire.keywords Neural Pathways
gdc.oaire.keywords Humans
gdc.oaire.keywords Brain
gdc.oaire.keywords Female
gdc.oaire.keywords Autistic Disorder
gdc.oaire.keywords Child
gdc.oaire.keywords Magnetic Resonance Imaging
gdc.oaire.popularity 3.4947338E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 4.0838049
gdc.openalex.normalizedpercentile 0.79
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ballı, Tuğçe
gdc.wos.citedcount 1
relation.isAuthorOfPublication 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isAuthorOfPublication.latestForDiscovery 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files