Sparse Deconvolution of Cell Type Medleys in Spatial Transcriptomics

dc.contributor.author Erdogan, Nuray Sogunmez
dc.contributor.author Eroglu, Deniz
dc.date.accessioned 2025-07-15T18:46:04Z
dc.date.available 2025-07-15T18:46:04Z
dc.date.issued 2025
dc.description Sogunmez Erdogan, Nuray/0000-0003-0909-064X; en_US
dc.description.abstract Mapping cell distributions across spatial locations with whole-genome coverage is essential for understanding cellular responses and signaling However, current deconvolution models aim to estimate the proportions of distinct cell types in each spatial transcriptomics spot by integrating reference single-cell data. These models often assume strong overlap between the reference and spatial datasets, neglecting biology-grounded constraints such as sparsity and cell-type variations, as well as technical sparsity. As a result, these methods rely on over-permissive algorithms that ignore given constraints leading to inaccurate predictions, particularly in heterogeneous or unmatched datasets. We introduce Weight-Induced Sparse Regression (WISpR), a machine learning algorithm that integrates spot-specific hyperparameters and sparsity-driven modeling. Unlike conventional approaches that neglect biology-grounded constraints, WISpR accurately predicts cell-type distributions while preserving biological coherence, i.e., spatially and functionally consistent cell-type localization, even in unmatched datasets. Benchmarking against five alternative methods across ten datasets, WISpR consistently outperformed competitors and predicted cellular landscapes in both normal and cancerous tissues. By leveraging sparse cell-type arrangements, WISpR provides biologically informed, high-resolution cellular maps. Its ability to decode tissue organization in both healthy and diseased states highlights WISpR's practical utility for spatial transcriptomics, particularly in challenging settings involving noise, sparsity, or reference mismatches. en_US
dc.description.sponsorship TUBITAK [222S096, 118C236]; TUSEB [40026]; UKRI [EP/Z002656/1]; BAGEP Award of the Science Academy en_US
dc.description.sponsorship Work by N.S.E was supported by TUBITAK (Grant No. 222S096) and TUSEB (Grant No. 40026). Work by D.E. was partially supported by TUBITAK (Grant No. 118C236), UKRI (EP/Z002656/1), and the BAGEP Award of the Science Academy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_US
dc.identifier.doi 10.1371/journal.pcbi.1013169
dc.identifier.issn 1553-734X
dc.identifier.issn 1553-7358
dc.identifier.scopus 2-s2.0-105007886949
dc.identifier.uri https://doi.org/10.1371/journal.pcbi.1013169
dc.identifier.uri https://hdl.handle.net/20.500.12469/7388
dc.language.iso en en_US
dc.publisher Public Library Science en_US
dc.relation.ispartof PLOS Computational Biology
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Sparse Deconvolution of Cell Type Medleys in Spatial Transcriptomics en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sogunmez Erdogan, Nuray/0000-0003-0909-064X
gdc.author.scopusid 58772066800
gdc.author.scopusid 37006533200
gdc.author.wosid Sogunmez Erdogan, Nuray/Aan-1273-2021
gdc.author.wosid Eroglu, Deniz/Gvs-9233-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Erdogan, Nuray Sogunmez; Eroglu, Deniz] Kadir Has Univ, Fac Nat Sci & Engn, Istanbul, Turkiye; [Eroglu, Deniz] Imperial Coll London, Dept Math, London, England en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage e1013169
gdc.description.volume 21 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4411231170
gdc.identifier.pmid 40505018
gdc.identifier.wos WOS:001508056900003
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.52975E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.4999748E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 5.36588926
gdc.openalex.normalizedpercentile 0.86
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Eroğlu, Deniz
gdc.virtual.author Söğünmez Erdoğan, Nuray
gdc.wos.citedcount 1
relation.isAuthorOfPublication 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication e909095d-dcc9-45ae-8b5f-c7b90dfd94d7
relation.isAuthorOfPublication.latestForDiscovery 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication 0829c741-cc05-42c7-934e-943f8448105f
relation.isOrgUnitOfPublication 6389da7e-5f65-438e-aceb-644a52934d07
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files