Enhancing Solar Convection Analysis With Multi-Core Processors and Gpus

dc.authoridHeidari, Arash/0000-0003-4279-8551
dc.authorscopusid57217424609
dc.authorscopusid58579282700
dc.authorscopusid23397424400
dc.authorscopusid59125628000
dc.authorwosidJabraeil Jamali, Mohammad Ali/I-8032-2019
dc.authorwosidHeidari, Arash/AAK-9761-2021
dc.authorwosidAmiri, Zahra/HHC-9302-2022
dc.contributor.authorHeidari, Arash
dc.contributor.authorAmiri, Zahra
dc.contributor.authorJamali, Mohammad Ali Jabraeil
dc.contributor.authorNavimipour, Nima Jafari
dc.date.accessioned2024-12-15T16:32:52Z
dc.date.available2024-12-15T16:32:52Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Heidari, Arash] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Amiri, Zahra] Lowa State Univ, Ivy Coll Business, Ames, IA USA; [Jamali, Mohammad Ali Jabraeil] Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Taiwan; [Navimipour, Nima Jafari] Western Caspian Univ, Res Ctr High Technol & Innovat Engn, Baku, Azerbaijanen_US
dc.descriptionHeidari, Arash/0000-0003-4279-8551en_US
dc.description.abstractIn the realm of astrophysical numerical calculations, the demand for enhanced computing power is imperative. The time-consuming nature of calculations, particularly in the domain of solar convection, poses a significant challenge for Astrophysicists seeking to analyze new data efficiently. Because they let different kinds of data be worked on separately, parallel algorithms are a good way to speed up this kind of work. A lot of this study is about how to use both multi-core computers and GPUs to do math work about solar energy at the same time. Cutting down on the time it takes to work with data is the main goal. This way, new data can be looked at more quickly and without having to practice for a long time. It works well when you do things in parallel, especially when you use GPUs for 3D tasks, which speeds up the work a lot. This is proof of how important it is to adjust the parallelization methods based on the size of the numbers. But for 2D math, computers with more than one core work better. The results not only fix bugs in models of solar convection, but they also show that speed changes a little based on the gear and how it is processed.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citation0
dc.identifier.doi10.1002/eng2.13050
dc.identifier.issn2577-8196
dc.identifier.scopus2-s2.0-85209153346
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/eng2.13050
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7084
dc.identifier.wosWOS:001356977800001
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectgraphic processoren_US
dc.subjectmulti-core processoren_US
dc.subjectparallel algorithmen_US
dc.subjectsolar convectionen_US
dc.titleEnhancing Solar Convection Analysis With Multi-Core Processors and Gpusen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files