Privacy Preservation for Machine Learning in Iiot Data Via Manifold Learning and Elementary Row Operations

dc.contributor.author Yetkin, E.F.
dc.contributor.author Ballı, T.
dc.date.accessioned 2025-05-15T18:39:47Z
dc.date.available 2025-05-15T18:39:47Z
dc.date.issued 2025
dc.description.abstract Modern large-scale production sites are highly data-driven and need large computational power due to the amount of the data collected. Hence, relying only on in-house computing systems for computational workflows is not always feasible. Instead, cloud environments are often preferred due to their ability to provide scalable and on-demand access to extensive computational resources. While cloud-based workflows offer numerous advantages, concerns regarding data privacy remain a significant obstacle to their widespread adoption, particularly in scenarios involving sensitive data and operations. This study aims to develop a computationally efficient privacy protection (PP) approach based on manifold learning and the elementary row operations inspired from the lower-upper (LU) decomposition. This approach seeks to enhance the security of data collected from industrial environments, along with the associated machine learning models, thereby protecting sensitive information against potential threats posed by both external and internal adversaries within the collaborative computing environment. © 2025 by SCITEPRESS – Science and Technology Publications, Lda. en_US
dc.description.sponsorship European Union in the Framework of ERASMUS, (101082683) en_US
dc.identifier.doi 10.5220/0013275000003899
dc.identifier.issn 2184-4356
dc.identifier.scopus 2-s2.0-105001738956
dc.identifier.uri https://doi.org/10.5220/0013275000003899
dc.identifier.uri https://hdl.handle.net/20.500.12469/7337
dc.language.iso en en_US
dc.publisher Science and Technology Publications, Lda en_US
dc.relation.ispartof International Conference on Information Systems Security and Privacy -- 11th International Conference on Information Systems Security and Privacy, ICISSP 2025 -- 20 February 2025 through 22 February 2025 -- Porto -- 328959 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Iiot en_US
dc.subject Machine Learning en_US
dc.subject Manifold Learning en_US
dc.subject Privacy Preservation en_US
dc.title Privacy Preservation for Machine Learning in Iiot Data Via Manifold Learning and Elementary Row Operations en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 35782637700
gdc.author.scopusid 24823826600
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Yetkin E.F.] Department of Management Information Systems, Kadir Has University, Istanbul, 34083, Turkey; [Ballı T.] Department of Management Information Systems, Kadir Has University, Istanbul, 34083, Turkey en_US
gdc.description.endpage 614 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 607 en_US
gdc.description.volume 2 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4407938076
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6027585E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.5322267E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 4.81974515
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ballı, Tuğçe
relation.isAuthorOfPublication 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isAuthorOfPublication.latestForDiscovery 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files