Multitype Learning Via Multimodal Data Embedding

dc.authorscopusid 57289197300
dc.authorscopusid 57288694000
dc.authorscopusid 58353740700
dc.authorscopusid 55364564400
dc.authorscopusid 6506505859
dc.contributor.author Yildiz, E.
dc.contributor.author Arsan, Taner
dc.contributor.author Safdil, E.B.
dc.contributor.author Arslan, F.
dc.contributor.author Alsan, H.F.
dc.contributor.author Arsan, T.
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:05:37Z
dc.date.available 2023-10-19T15:05:37Z
dc.date.issued 2021
dc.department-temp Yildiz, E., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Safdil, E.B., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Arslan, F., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Alsan, H.F., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Arsan, T., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey en_US
dc.description 5h International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2021 --21 October 2021 through 23 October 2021 -- --174473 en_US
dc.description.abstract This paper creates a multimodal retrieval system for image and text data in a multi-type learning approach that enables text-to-image, image-to-text, text-to-text, and image-to-image retrievals. As a practical solution, a mobile application is developed in which the users can upload their images to search a description sentence for the images. The user system is created on the application, which is done with React Native, and crucial features like e-mail authentication and reset password options are added to the application. An essential database system is designed with PostgreSQL to store user information and search for the user. The multimodal embedding study is worked, and the model that recognizes multitype retrievals is formed. The image-to-text retrieval model, which is our application's idea, is applied to the mobile application. © 2021 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ISMSIT52890.2021.9604738 en_US
dc.identifier.endpage 461 en_US
dc.identifier.isbn 9781665449304
dc.identifier.scopus 2-s2.0-85123309356 en_US
dc.identifier.startpage 457 en_US
dc.identifier.uri https://doi.org/10.1109/ISMSIT52890.2021.9604738
dc.identifier.uri https://hdl.handle.net/20.500.12469/4969
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof ISMSIT 2021 - 5th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Convolutional Networks en_US
dc.subject Cross-Modal Learning en_US
dc.subject Deep Learning en_US
dc.subject Long-Short Term Memory (LSTM) en_US
dc.subject Mobile Application en_US
dc.subject Multimodal Retrieval en_US
dc.subject React Native en_US
dc.subject Authentication en_US
dc.subject Convolutional neural networks en_US
dc.subject Embeddings en_US
dc.subject Information retrieval en_US
dc.subject Mobile computing en_US
dc.subject Search engines en_US
dc.subject Convolutional networks en_US
dc.subject Cross-modal en_US
dc.subject Cross-modal learning en_US
dc.subject Deep learning en_US
dc.subject Long-short term memory en_US
dc.subject Mobile applications en_US
dc.subject Multi-modal en_US
dc.subject Multimodal retrieval en_US
dc.subject Multitype en_US
dc.subject React native en_US
dc.subject Long short-term memory en_US
dc.title Multitype Learning Via Multimodal Data Embedding en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4969.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text