Verbal Harassment Detection in Online Games Using Machine Learning Methods

dc.contributor.author Hibatullah, Helmi
dc.contributor.author Balli, Tugce
dc.contributor.author Yetkin, E. Fatih
dc.date.accessioned 2025-09-15T15:49:08Z
dc.date.available 2025-09-15T15:49:08Z
dc.date.issued 2025
dc.description.abstract Video games have been an inseparable aspect for many throughout their upbringing. The widespread adoption of the internet in the early 2000s has brought video games from the traditional offline media to the online environment. Consequently, people from different parts of the world can play together and communicate in-game with each other. Nowadays, most massively multiplayer online games (MMOs) incorporate voice communication features. Playing video games online with a certain degree of anonymity, along with the ability to verbally communicate with each other, has proven to be a dangerous combination that can breed toxic and abusive behaviors if left unmoderated. This paper proposes a new approach to integrating Whisper, a pre-trained automatic speech recognition (ASR) model, with the well-researched topic of text-based abusive behavior detection. Our proposed verbal harassment detection pipelines yielded an average F-score of 0.899 for all variants tested. en_US
dc.description.sponsorship CyberMACS; European Commission; European Union [101082683] en_US
dc.description.sponsorship Our research is funded by CyberMACS, an applied master's degree program in cybersecurity, approved and supported by the European Commission, European Union Grant Agreement Number 101082683. en_US
dc.identifier.doi 10.1016/j.entcom.2025.101009
dc.identifier.issn 1875-9521
dc.identifier.issn 1875-953X
dc.identifier.scopus 2-s2.0-105014397845
dc.identifier.uri https://doi.org/10.1016/j.entcom.2025.101009
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Entertainment Computing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Verbal Harassment Detection en_US
dc.subject Video Games Communication en_US
dc.subject Natural Language Processing en_US
dc.subject Whisper en_US
dc.subject Automatic Speech Recognition en_US
dc.title Verbal Harassment Detection in Online Games Using Machine Learning Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.wosid Yetkin, Emrullah/Aag-1827-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Hibatullah, Helmi] Kadir Has Univ, CyberMACS programme, TR-34083 Istanbul, Turkiye; [Balli, Tugce; Yetkin, E. Fatih] Kadir Has Univ, Dept Management Informat Syst, TR-34083 Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 101009
gdc.description.volume 55 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4413581183
gdc.identifier.wos WOS:001563901300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5628186E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.514583E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.14
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 6
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ballı, Tuğçe
gdc.virtual.author Yetkin, Emrullah Fatih
gdc.wos.citedcount 1
relation.isAuthorOfPublication 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isAuthorOfPublication 81114204-31da-4513-a19f-b5446f8a3a08
relation.isAuthorOfPublication.latestForDiscovery 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isOrgUnitOfPublication c10ffc80-6da5-4b86-b481-aae660325ae5
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery c10ffc80-6da5-4b86-b481-aae660325ae5

Files