Deepfake Detection Using Deep Learning Methods: a Systematic and Comprehensive Review

dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Dag, Hasan
dc.contributor.author Unal, Mehmet
dc.contributor.other Computer Engineering
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:37:06Z
dc.date.available 2024-06-23T21:37:06Z
dc.date.issued 2024
dc.description Heidari, Arash/0000-0003-4279-8551; Unal, Mehmet/0000-0003-1243-153X en_US
dc.description.abstract Deep Learning (DL) has been effectively utilized in various complicated challenges in healthcare, industry, and academia for various purposes, including thyroid diagnosis, lung nodule recognition, computer vision, large data analytics, and human-level control. Nevertheless, developments in digital technology have been used to produce software that poses a threat to democracy, national security, and confidentiality. Deepfake is one of those DL-powered apps that has lately surfaced. So, deepfake systems can create fake images primarily by replacement of scenes or images, movies, and sounds that humans cannot tell apart from real ones. Various technologies have brought the capacity to change a synthetic speech, image, or video to our fingers. Furthermore, video and image frauds are now so convincing that it is hard to distinguish between false and authentic content with the naked eye. It might result in various issues and ranging from deceiving public opinion to using doctored evidence in a court. For such considerations, it is critical to have technologies that can assist us in discerning reality. This study gives a complete assessment of the literature on deepfake detection strategies using DL-based algorithms. We categorize deepfake detection methods in this work based on their applications, which include video detection, image detection, audio detection, and hybrid multimedia detection. The objective of this paper is to give the reader a better knowledge of (1) how deepfakes are generated and identified, (2) the latest developments and breakthroughs in this realm, (3) weaknesses of existing security methods, and (4) areas requiring more investigation and consideration. The results suggest that the Conventional Neural Networks (CNN) methodology is the most often employed DL method in publications. According to research, the majority of the articles are on the subject of video deepfake detection. The majority of the articles focused on enhancing only one parameter, with the accuracy parameter receiving the most attention. This article is categorized under:Technologies > Machine LearningAlgorithmic Development > MultimediaApplication Areas > Science and Technology en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1002/widm.1520
dc.identifier.issn 1942-4787
dc.identifier.issn 1942-4795
dc.identifier.scopus 2-s2.0-85177203467
dc.identifier.uri https://doi.org/10.1002/widm.1520
dc.identifier.uri https://hdl.handle.net/20.500.12469/5692
dc.language.iso en en_US
dc.publisher Wiley Periodicals, inc en_US
dc.relation.ispartof WIREs Data Mining and Knowledge Discovery
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject deep learning en_US
dc.subject deepfake en_US
dc.subject detection en_US
dc.subject neural networks en_US
dc.subject review en_US
dc.title Deepfake Detection Using Deep Learning Methods: a Systematic and Comprehensive Review en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.id Unal, Mehmet/0000-0003-1243-153X
gdc.author.institutional Dağ, Hasan
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.scopusid 57217424609
gdc.author.scopusid 55897274300
gdc.author.scopusid 6507328166
gdc.author.scopusid 57254381700
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.author.wosid Unal, Mehmet/W-2804-2018
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::review
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Heidari, Arash; Navimipour, Nima Jafari] Halic Univ, Dept Software Engn, TR-34060 Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Taiwan; [Dag, Hasan] Kadir Has Univ, Management Informat Syst, Istanbul, Turkiye; [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkiye en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q1
gdc.description.volume 14 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4388851105
gdc.identifier.wos WOS:001107488700001
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 122.0
gdc.oaire.influence 1.3746324E-8
gdc.oaire.isgreen false
gdc.oaire.popularity 5.8439436E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 27.254
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 72
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 426
gdc.plumx.newscount 1
gdc.plumx.scopuscites 196
gdc.scopus.citedcount 201
gdc.wos.citedcount 125
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files