Garbage in, Garbage Out: A Case Study on Defective Product Prediction in Manufacturing

dc.authorscopusid58705861300
dc.authorscopusid58706155400
dc.authorscopusid58706013300
dc.authorscopusid57887008300
dc.authorscopusid57219836294
dc.authorscopusid6507328166
dc.contributor.authorDağ, Hasan
dc.contributor.authorUcar,B.E.
dc.contributor.authorSaygut,I.
dc.contributor.authorDuzgun,B.
dc.contributor.authorDemirkiran,F.
dc.contributor.authorDag,H.
dc.date.accessioned2024-06-23T21:38:58Z
dc.date.available2024-06-23T21:38:58Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-tempColhak F., Management Information Systems Kadir Has University, Istanbul, Turkey; Ucar B.E., Management Information Systems Kadir Has University, Istanbul, Turkey; Saygut I., Management Information Systems Kadir Has University, Istanbul, Turkey; Duzgun B., Management Information Systems Kadir Has University, Istanbul, Turkey; Demirkiran F., Management Information Systems Kadir Has University, Istanbul, Turkey; Dag H., Management Information Systems Kadir Has University, Istanbul, Turkeyen_US
dc.description.abstractDespite their potential business value and invest-ments, data science projects often fail owing to a lack of preparedness, implementation challenges, and poor data quality. This study aimed to develop a machine learning model for predicting defective products in the dyeing process within the manufacturing domain. However, inadequate importance given to data by the involved factory, insufficient data quality, and the lack of the necessary technical infrastructure for data science projects have hindered attaining desired results. This study emphasizes to academic researchers and industry experts the significance of data quality and technical infrastructure, highlights how these deficiencies can impact the success of a data science project, and provides several recommendations. © 2023 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/UBMK59864.2023.10286707
dc.identifier.endpage287en_US
dc.identifier.isbn979-835034081-5
dc.identifier.scopus2-s2.0-85177602126
dc.identifier.scopusqualityN/A
dc.identifier.startpage282en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK59864.2023.10286707
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5841
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering -- 8th International Conference on Computer Science and Engineering, UBMK 2023 -- 13 September 2023 through 15 September 2023 -- Burdur -- 193873en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdata qualityen_US
dc.subjectdata scienceen_US
dc.subjectimbalanced dataen_US
dc.subjectmachine learningen_US
dc.subjectmanufacturingen_US
dc.titleGarbage in, Garbage Out: A Case Study on Defective Product Prediction in Manufacturingen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscoverye02bc683-b72e-4da4-a5db-ddebeb21e8e7

Files