Garbage In, Garbage Out: a Case Study on Defective Product Prediction in Manufacturing

dc.authorscopusid 58705861300
dc.authorscopusid 58706155400
dc.authorscopusid 58706013300
dc.authorscopusid 57887008300
dc.authorscopusid 57219836294
dc.authorscopusid 6507328166
dc.contributor.author Colhak,F.
dc.contributor.author Dağ, Hasan
dc.contributor.author Ucar,B.E.
dc.contributor.author Demirkıran, Ferhat
dc.contributor.author Saygut,I.
dc.contributor.author Duzgun,B.
dc.contributor.author Demirkiran,F.
dc.contributor.author Dag,H.
dc.contributor.other Management Information Systems
dc.date.accessioned 2024-06-23T21:38:58Z
dc.date.available 2024-06-23T21:38:58Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp Colhak F., Management Information Systems Kadir Has University, Istanbul, Turkey; Ucar B.E., Management Information Systems Kadir Has University, Istanbul, Turkey; Saygut I., Management Information Systems Kadir Has University, Istanbul, Turkey; Duzgun B., Management Information Systems Kadir Has University, Istanbul, Turkey; Demirkiran F., Management Information Systems Kadir Has University, Istanbul, Turkey; Dag H., Management Information Systems Kadir Has University, Istanbul, Turkey en_US
dc.description.abstract Despite their potential business value and invest-ments, data science projects often fail owing to a lack of preparedness, implementation challenges, and poor data quality. This study aimed to develop a machine learning model for predicting defective products in the dyeing process within the manufacturing domain. However, inadequate importance given to data by the involved factory, insufficient data quality, and the lack of the necessary technical infrastructure for data science projects have hindered attaining desired results. This study emphasizes to academic researchers and industry experts the significance of data quality and technical infrastructure, highlights how these deficiencies can impact the success of a data science project, and provides several recommendations. © 2023 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/UBMK59864.2023.10286707
dc.identifier.endpage 287 en_US
dc.identifier.isbn 979-835034081-5
dc.identifier.scopus 2-s2.0-85177602126
dc.identifier.startpage 282 en_US
dc.identifier.uri https://doi.org/10.1109/UBMK59864.2023.10286707
dc.identifier.uri https://hdl.handle.net/20.500.12469/5841
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof UBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering -- 8th International Conference on Computer Science and Engineering, UBMK 2023 -- 13 September 2023 through 15 September 2023 -- Burdur -- 193873 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject data quality en_US
dc.subject data science en_US
dc.subject imbalanced data en_US
dc.subject machine learning en_US
dc.subject manufacturing en_US
dc.title Garbage In, Garbage Out: a Case Study on Defective Product Prediction in Manufacturing en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication 695a8adc-2330-4d32-ab37-8b781716d609
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files