Accurate Refinement of Docked Protein Complexes Using Evolutionary Information and Deep Learning

dc.contributor.author Akbal-Delibas, Bahar
dc.contributor.author Farhoodi, Roshanak
dc.contributor.author Pomplun, Marc
dc.contributor.author Haspel, Nurit
dc.date.accessioned 2019-06-27T08:01:46Z
dc.date.available 2019-06-27T08:01:46Z
dc.date.issued 2016
dc.description.abstract One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work we introduced AccuRefiner a machine learning based tool for refining protein-protein complexes. Given a docked complex the refinement tool produces a small set of refined versions of the input complex with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 angstrom error margin on average by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures. en_US]
dc.identifier.doi 10.1142/S0219720016420026 en_US
dc.identifier.issn 0219-7200
dc.identifier.issn 1757-6334
dc.identifier.scopus 2-s2.0-84957705357 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/464
dc.identifier.uri https://doi.org/10.1142/S0219720016420026
dc.language.iso en en_US
dc.publisher Imperıal College Press en_US
dc.relation.ispartof Journal of Bioinformatics and Computational Biology
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Protein Docking en_US
dc.subject Ranking And Scoring Functions en_US
dc.subject Deep Learning Neural Networks en_US
dc.title Accurate Refinement of Docked Protein Complexes Using Evolutionary Information and Deep Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Akbal-Delibas, Bahar en_US
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.issue 3
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 1642002
gdc.description.volume 14 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W2264791733
gdc.identifier.pmid 26846813 en_US
gdc.identifier.wos WOS:000384031500004 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 3.298438E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Molecular Docking Simulation
gdc.oaire.keywords Deep Learning Neural Networks
gdc.oaire.keywords Protein Conformation
gdc.oaire.keywords Proteins
gdc.oaire.keywords Ranking And Scoring Functions
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Protein Docking
gdc.oaire.keywords Databases, Protein
gdc.oaire.popularity 4.7746203E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.29983783
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 15
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 25
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 15
gdc.relation.journal Journal of Bioinformatics and Computational Biology
gdc.scopus.citedcount 15
gdc.virtual.author Delıbaş, Ayşe Bahar
gdc.wos.citedcount 12
relation.isAuthorOfPublication 229c2e99-3e3a-429f-bc29-b66887aeacda
relation.isAuthorOfPublication.latestForDiscovery 229c2e99-3e3a-429f-bc29-b66887aeacda
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files