Neural Network Design for the Recurrence Prediction of Post-Operative Non-Metastatic Kidney Cancer Patients
dc.contributor.author | Tander, Baran | |
dc.contributor.author | Özmen, Atilla | |
dc.contributor.author | Özden, Ender | |
dc.date.accessioned | 2019-06-28T11:10:47Z | |
dc.date.available | 2019-06-28T11:10:47Z | |
dc.date.issued | 2016 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | In this paper various post-operative recurrence estimation models called nomograms for the kidney cancer patients without any metastates are introduced and novel systems based on a Multilayer Perceptron Neural Network are designed to simplify and integrate the mentioned techniques which is believed to ease the physician' s post-operative follow up procedures. The parameters effecting the recurrence are the TNM stage tumor size and nuclear (Fuhrman) grade the existance of necrosis and vascular invasion. Independent systems for two of the individual prediction methods as well as a system that combines these are designed and performance analyses are carried out to verify the reliability. © 2015 Chamber of Electrical Engineers of Turkey. | en_US] |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1109/ELECO.2015.7394627 | en_US |
dc.identifier.endpage | 165 | |
dc.identifier.isbn | 9786050107371 | |
dc.identifier.scopus | 2-s2.0-84963801089 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 162 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/1296 | |
dc.identifier.uri | https://doi.org/10.1109/ELECO.2015.7394627 | |
dc.identifier.wos | WOS:000380410800032 | en_US |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Tander, Baran | en_US |
dc.institutionauthor | Özmen, Atilla | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.journal | 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Neural Network Design for the Recurrence Prediction of Post-Operative Non-Metastatic Kidney Cancer Patients | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 75e36d40-1e6e-401f-b656-5894d3bd22e9 | |
relation.isAuthorOfPublication | cf8f9e05-3f89-4ab6-af78-d0937210fb77 | |
relation.isAuthorOfPublication.latestForDiscovery | 75e36d40-1e6e-401f-b656-5894d3bd22e9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Neural Network Design for the Recurrence Prediction of Post-Operative Non-Metastatic Kidney Cancer Patients.pdf
- Size:
- 155.18 KB
- Format:
- Adobe Portable Document Format
- Description: