Hisse Senetleri Getirilerinin Lojistik Regresyon ve Doğrusal Regresyon Modelleri ile Bir Analizi

Loading...
Thumbnail Image

Date

2014

Authors

Sarı, Burcu

Journal Title

Journal ISSN

Volume Title

Publisher

Kadir Has Üniversitesi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Bu tezde İstanbul BIST100 A kategorisi hisse senetlerinin net ve brüt getiri değerleri üzerinde doğrusal regresyon ve lojistik regresyon modelleri uygulaması yapılmıştır. Regresyon modellerinde model parametrelerinin tahmini, model parametreleri üzerindeki istatistiksel testler ve güven aralıkları, kısaca istatistiksel sonuç çıkarımı, için hata terimleri ve dolayısıyla yanıt ve açıklayıcı değişkenlerin normal dağılıma sahip olduğu varsayımı önemlidir. Ancak bu varsayımın tam olarak sağlanamadığı ve model kestirimlerinin sabit olmayan varyansa sahip olması gibi pek çok modelleme sorunu ortaya çıkmaktadır. Böyle bir durumda, varyansı sabitleştirmek için model değişkenleri üzerinde dönüşüm işlemleri yapılması yoluna gidilebilmektedir. Ancak, normallik, sabit varyans ve basit model formu gibi bir istatistiksel modellemede istenilen özelliklerin tümünün sadece dönüşüm ile elde edilemediği de görülmektedir. Bu bağlamda; yanıt değişkeni ve hata terimlerinin normal dağılıma sahip olması gereğini şart koşmayan Genelleştirilmiş Lineer Modeller (GLM) araçlarının kullanımı öne çıkmaktadır. Yanıt değişkenlerinin iki ve çok değerli kesikli rasgele değişkenler olduğu, açıklayıcı değişkenlerin sürekli veya kesikli değerler alabilen değişkenlerden oluşturulabildiği bir GLM türü olan lojistik regresyon modeli bunlardan biridir. Tez çalışması aynı veri kümesi üzerinde gerek doğrusal gerek lojistik regresyon modeli kullanarak hisse senetleri getirilerine ilişkin iki bakışlı bir ilişki yapısı analizi ortaya koymakta hem de bu modellerin paralel biçimde birlikte kullanımı ile analizde bir tamamlayıcılık örneği sergilemektedir.
This thesis applies linear regression and logistic regression anayses on a data set about the prices and returns on BIST 100-A stocks of the Istanbul Stock Exchange Market "Borsa Istanbul". Regression models are largely based on Normal distribution assumptions for the error terms, and therefore for the other model variables they contain. When this assumption is not met in reality, several modeling problems come into existence. Non-constancy of variance of the model estimates is one of those problems. To ease this problem, Normality transformations for dependent and explanatory variables are used to a large extend. Several other model improving techniques are also used along with the Normality tarnsformation attempts. All these may not be enough to get rid of non-Normality problem. In this regard Generalized Linear Models (GLM) can be an taken as a flexible modeling alternative. The thesis work employs classical linear multiple regression and GLM type logistic regression to present a relation/association analysis on stock returns. Logistic regression allows to have binomial or multinomial response variables and continuous or dicrete type explanatory/predictive variables in the model. With all these, the thesis presents not only two different type regression models and analysis on the same data set of stock prices but also shows that these two models complement each other in regard of drawing results about returns on the stocks with respect to some other major investment assets.

Description

Keywords

Hisse Senedi Fiyatları ve Getirileri, Genelleştirilmiş Lineer (Doğrusal) Modeller, Lojistik Regresyon Analizi, Doğrusal Regresyon Analizi, Stock Prices and Returns, Generalized Linear Models, Logistic Regression, Linear Regression

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections