A System Model Proposal in Which Human Creativity Meets With Machine Learning Coping With Smoking Cravings

dc.contributor.advisorSoysal, Leventen_US
dc.contributor.authorPartanaz, Damla
dc.date.accessioned2020-02-17T19:02:34Z
dc.date.available2020-02-17T19:02:34Z
dc.date.issued2019
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, İletişim Bilimleri Ana Bilim Dalıen_US
dc.department-tempKadir Has University : Graduate School of Social Sciences : New Mediaen_US
dc.description.abstractQuitting smoking is hard, yet preventing relapse can be even harder. During those craving moments, urges to smoke may be the determining factor as to whether a smoking quitter will relapse or not. I researched the question "what could be done at craving moments in order to resist to smoke?" and spotted that the things that can be done/thought, at the craving moments instead of smoking, can vary from person to person and even from one craving moment to another craving moment. So I figured out that some people can come up with "instant creative solutions with some design thinking approach to these craving moments". Actually, people are already doing this even if some of them are doing this unconsciously and do not look at those acts as "solutions". And if they do, those solutions -real world information- are not preserved as computable data. Thereupon I pursued the question: "how can I computerize these experiences and enable the exchange of those solutions between smoking quitters in an optimum way?". Drawing inspiration from this question I designed a system model. The designed system will (1) take solutions from smoking quitters for each craving moment they encounter and pass without smoking, and (2) give the optimum solution from collected solutions to the ones who need a solution at their craving moment. These solutions are on the edge of the smoking quitters' imagination and creativity. And the given instant solution- the recommendation- will be (1) personalized and also (2) suitable with that craving moment's characteristic 'features'. These solutions can vary just as the answers to these questions (a) "where?", (b) "while doing what?", (c) "with whom?", (d) "which emotion state?", and (e)"when?". I researched two topics: smoking cravings, machine learning. Then to better understand the users, I conducted a qualitative exploratory approach and in-depth interviews. In the light of the analysis of these interviews, I designed the conceptual model of the system model and lastly for the system-user interface design and as a data collection solution I designed and developed a chatbot named "Drop-it-at-t0_bot" on Telegram.en_US
dc.description.abstractSigarayı bırakmak zordur, ancak tekrar başlamayı önlemek daha da zor olabilir. Aşerme anları, sigara içme dürtüsü, sigarayı bırakmış bir kişinin sigaraya tekrar başlayıp başlamayacağı konusunda belirleyici olabilir. “Sigara içmemek için aşerme anlarında neler yapılabilir?” sorusunu araştırdım ve sigara içmek yerine aşerme anlarında yapılabilecek / düşünülebilecek şeylerin kişiden kişiye ve hatta bir aşerme anından bir aşerme anına farklı olabileceğini farkettim. Ve bazı insanların “bu aşerme anlarına tasarımsal düşünme yaklaşımıyla anlık yaratıcı çözümler” bulabileceklerini anladım. Aslında, bunu zaten yapıyorlar. Ancak bazıları bunu bilinçsizce yapıyor ve bu eylemlere “çözüm” olarak bakmıyorlar. Ayrıca öyle baksalar bile, bu çözümler hesaplanabilir takip edilebilen veriler değillerdir. Bunun üzerine şu soruyu sordum: “Sigarayı bırakmış kişiler arasında bu deneyimlerini/çözümlerini optimum şekilde nasıl sirküle edebilirim?”. Sonra bir sistem modeli tasarladım. Tasarlanan sistem (1) karşılaştıkları ve sigara içmeden geçirdikleri her aşerme anı için kişilerin buldukları/uyguladıkları çözümleri alacak ve (2) toplanan çözümlerden aşerme anında çözüme ihtiyaç duyanlara en uygun çözüm sunacaktır. Bu çözümler sigarayı bırakanların hayal gücü ve yaratıcılığının sınırındadır. Ve verilen öneri (1) kişiselleştirilmiş ve ayrıca (2) kişinin içinde bulunduğu aşerme anının özelliklerine uygun olacaktır. Bunlar, (a) “nerede?”, (b) “ne yaparken?”, (c) “kiminle?”, (d) “hangi duygu durumunu?” ve (e) "ne zaman?” sorularının cevapları olabilir. İki konuyu araştırdım: sigara aşermeleri ve makine öğrenmesi. Sonra kullanıcıları daha iyi anlamak için, nitel bir keşif yaklaşımı ve derinlemesine görüşmeler yaptım. Bu görüşmelerin analizleri ışığında, sistem modelinin kavramsal modelini ve hem veri toplama çözümü hem de kullanıcı-sistem arayüzü çözümü olarak bir chatbot tasarladım ve geliştirdim.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/2770
dc.identifier.yoktezid588556en_US
dc.institutionauthorPartanaz, Damla
dc.institutionauthorSoysal, Levent
dc.language.isoenen_US
dc.publisherKadir Has Üniversitesien_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSmoking cravingsen_US
dc.subjectHuman-Machine collaborationen_US
dc.subjectmachine learningen_US
dc.subjectsystem designen_US
dc.subjectchatboten_US
dc.subjectdesign thinkingen_US
dc.subjectcomputational thinkingen_US
dc.subjectdata collectionen_US
dc.subjectSigara aşermesien_US
dc.subjectİnsan-Makine işbirliğien_US
dc.subjectmakine öğrenmesien_US
dc.subjectsistem tasarımıen_US
dc.subjectchatboten_US
dc.subjecttasarım düşüncesien_US
dc.subjecthesaplamalı düşünmeen_US
dc.subjectveri toplamaen_US
dc.titleA System Model Proposal in Which Human Creativity Meets With Machine Learning Coping With Smoking Cravingsen_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationa8a131a3-fac4-40da-ae23-f5fc1e4da326
relation.isAuthorOfPublicationda429164-95e5-47dd-b596-fa1be4fcca53
relation.isAuthorOfPublication.latestForDiscoverya8a131a3-fac4-40da-ae23-f5fc1e4da326

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A system model proposal in which human creativity meets with machine learning coping with smoking cravings.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections