Assessing the Effectiveness of Ott Services, Branded Apps, and Gamified Loyalty Giveaways on Mobile Customer Churn in the Telecom Industry: a Machine-Learning Approach

dc.authorid Kiygi-Calli, Meltem/0000-0002-2979-9309
dc.authorscopusid 59193142200
dc.authorscopusid 27067862500
dc.authorscopusid 57210113353
dc.authorscopusid 58660566600
dc.authorwosid El Oraiby, Maryam/KDB-8917-2024
dc.authorwosid Calli, Meltem/AAP-7361-2021
dc.contributor.author Kirgiz, Omer Bugra
dc.contributor.author Çağlıyor, Sendi
dc.contributor.author Kiygi-Calli, Meltem
dc.contributor.author Kıygı Çallı, Meltem
dc.contributor.author Cagliyor, Sendi
dc.contributor.author El Oraiby, Maryam
dc.contributor.other Business Administration
dc.date.accessioned 2024-10-15T19:40:06Z
dc.date.available 2024-10-15T19:40:06Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Kirgiz, Omer Bugra; El Oraiby, Maryam] Kadir Has Univ, Sch Grad Studies, TR-34083 Istanbul, Turkiye; [Kiygi-Calli, Meltem; Cagliyor, Sendi] Kadir Has Univ, Dept Business Adm, TR-34083 Istanbul, Turkiye en_US
dc.description Kiygi-Calli, Meltem/0000-0002-2979-9309 en_US
dc.description.abstract Telecom operators allocate a significant amount of resources to retain their customers as the organic growth in the number of customers is slowing down. Gamified loyalty programs, branded apps, and over-the-top (OTT) services emerged as ways to develop customer acquisition and retention strategies. Despite these strategies, some mobile customers still churn; therefore, churn prediction plays an essential role in the sustainable future of telecom businesses. Churn prediction is used both to detect customers with a high propensity to churn and to identify the reasons behind their churn behavior. This study examines several features affecting the churn behavior of mobile customers, including branded apps, gamified loyalty programs, and OTT services. In this study, the secondary data is provided by a telecom operator and contains the attributes of both churner and non-churner mobile customers. Logistic regression and random forest classifiers are compared in terms of their predictive power, and we used the latter as the machine learning algorithm in the churn prediction model. To understand the variable importance, mean decrease in impurity and permutation importance are performed. The key findings of this research reveal that while gamified loyalty giveaways and branded app strategies are effective, OTT service strategies show lower importance in predicting mobile customer churn behavior. en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.telpol.2024.102816
dc.identifier.issn 0308-5961
dc.identifier.issn 1879-3258
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85196965369
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.telpol.2024.102816
dc.identifier.uri https://hdl.handle.net/20.500.12469/6348
dc.identifier.volume 48 en_US
dc.identifier.wos WOS:001298995400001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Churn prediction en_US
dc.subject Over-the-top (OTT) services en_US
dc.subject Machine learning en_US
dc.subject Telecom operator en_US
dc.subject Gamified loyalty giveaways en_US
dc.subject Branded apps en_US
dc.title Assessing the Effectiveness of Ott Services, Branded Apps, and Gamified Loyalty Giveaways on Mobile Customer Churn in the Telecom Industry: a Machine-Learning Approach en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 988e0e4a-68aa-4306-aa59-3212800245c5
relation.isAuthorOfPublication 1de649f1-e2d0-4f97-831e-2f0db9ec4de3
relation.isAuthorOfPublication.latestForDiscovery 988e0e4a-68aa-4306-aa59-3212800245c5
relation.isOrgUnitOfPublication c10ffc80-6da5-4b86-b481-aae660325ae5
relation.isOrgUnitOfPublication.latestForDiscovery c10ffc80-6da5-4b86-b481-aae660325ae5

Files