Feedback-Based Quantum Algorithm for Constrained Optimization Problems

dc.authorscopusid 57217571854
dc.authorscopusid 24824407000
dc.authorscopusid 23394098500
dc.contributor.author Karabacak, Özkan
dc.contributor.author Karabacak, Ö.
dc.contributor.author Wisniewski, R.
dc.contributor.other Mechatronics Engineering
dc.date.accessioned 2025-05-15T18:41:14Z
dc.date.available 2025-05-15T18:41:14Z
dc.date.issued 2025
dc.department Kadir Has University en_US
dc.department-temp [Abdul Rahman S.] Automation and Control Section, Department of Electronic Systems, Aalborg University, Aalborg, Denmark; [Karabacak Ö.] Department of Mechatronics Engineering, Kadir Has University, Istanbul, Turkey; [Wisniewski R.] Automation and Control Section, Department of Electronic Systems, Aalborg University, Aalborg, Denmark en_US
dc.description.abstract The feedback-based algorithm for quantum optimization (FALQON) has recently been proposed to find ground states of Hamiltonians and solve quadratic unconstrained binary optimization problems. This paper efficiently generalizes FALQON to tackle quadratic constrained binary optimization (QCBO) problems. For this purpose, we introduce a new operator that encodes the problem’s solution as its ground state. Using control theory, we design a quantum control system such that the state converges to the ground state of this operator. When applied to the QCBO problem, we show that our proposed algorithm saves computational resources by reducing the depth of the quantum circuit and can perform better than FALQON. The effectiveness of our proposed algorithm is further illustrated through numerical simulations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. en_US
dc.description.sponsorship Independent Research Fund Denmark; DFF, (0136-00204B) en_US
dc.identifier.doi 10.1007/978-3-031-85700-3_20
dc.identifier.endpage 289 en_US
dc.identifier.isbn 9783031856990
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-105003269860
dc.identifier.scopusquality Q3
dc.identifier.startpage 277 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-85700-3_20
dc.identifier.uri https://hdl.handle.net/20.500.12469/7351
dc.identifier.volume 15580 LNCS en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Computer Science -- 15th International Conference on Parallel Processing and Applied Mathematics, PPAM 2024 -- 8 September 2024 through 11 September 2024 -- Ostrava -- 329749 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Feedback-Based Algorithm For Quantum Optimization en_US
dc.subject Lyapunov Control en_US
dc.subject Noisy Intermediate-Scale Quantum Devices en_US
dc.subject Quadratic Constrained Binary Optimization en_US
dc.subject Variational Quantum Algorithms en_US
dc.title Feedback-Based Quantum Algorithm for Constrained Optimization Problems en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication a7f221bd-0e6f-4846-a7cc-18833a9ab0f8
relation.isAuthorOfPublication.latestForDiscovery a7f221bd-0e6f-4846-a7cc-18833a9ab0f8
relation.isOrgUnitOfPublication 01f3d407-6823-4ad3-8298-0b6a2a6e5cff
relation.isOrgUnitOfPublication.latestForDiscovery 01f3d407-6823-4ad3-8298-0b6a2a6e5cff

Files