Comparing Deep Neural Networks and Machine Learning for Detecting Malicious Domain Name Registrations
dc.authorscopusid | 58705861300 | |
dc.authorscopusid | 57964038500 | |
dc.authorscopusid | 6507328166 | |
dc.authorscopusid | 6602924425 | |
dc.contributor.author | Ecevit, Mert İlhan | |
dc.contributor.author | Dağ, Hasan | |
dc.contributor.author | Dag, Hasan | |
dc.contributor.author | Creutzburg, Reiner | |
dc.date.accessioned | 2024-10-15T19:42:47Z | |
dc.date.available | 2024-10-15T19:42:47Z | |
dc.date.issued | 2024 | |
dc.department | Kadir Has University | en_US |
dc.department-temp | [Colhak, Furkan; Ecevit, Mert Ilhan; Dag, Hasan] Kadir Has Univ, CCIP, Ctr Cyber Secur & Crit Infrastruct Protect, Istanbul, Turkiye; [Creutzburg, Reiner] SRH Berlin Univ Appl Technol, Berlin Sch Technol, Berlin, Germany; [Creutzburg, Reiner] TH Brandenburg, Fachbereich Informat & Medien, Brandenburg, Germany | en_US |
dc.description.abstract | This study highlights the effectiveness of deep neural network (DNN) models, particularly those integrating natural language processing (NLP) and multilayer perceptron (MLP) techniques, in detecting malicious domain registrations compared to traditional machine learning (ML) approaches. The integrated DNN models significantly outperform traditional ML models. Notably, DNN models that incorporate both textual and numeric features demonstrate enhanced detection capabilities. The utilized Canine + MLP model achieves 85.81% accuracy and an 86.46% F1-score on the MTLP Dataset. While traditional ML models offer advantages such as faster training times and smaller model sizes, their performance generally falls short compared to DNN models. This study underscores the trade-offs between computational efficiency and detection accuracy, suggesting that their superior performance often justifies the added costs despite higher resource requirements. | en_US |
dc.description.sponsorship | European Commission, EC; Erasmus+, (101082683) | en_US |
dc.description.sponsorship | European Union [101082683] | en_US |
dc.description.sponsorship | This work was supported partially by the European Union in the framework of ERASMUS MUNDUS, Project CyberMACS (Project #101082683) (https://cybermacs.eu). | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1109/COINS61597.2024.10622643 | |
dc.identifier.endpage | 85 | en_US |
dc.identifier.isbn | 9798350349603 | |
dc.identifier.isbn | 9798350349597 | |
dc.identifier.issn | 2996-5322 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 82 | en_US |
dc.identifier.uri | https://doi.org/10.1109/COINS61597.2024.10622643 | |
dc.identifier.wos | WOS:001298880300016 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | IEEE International Conference on Omni-Layer Intelligent Systems (IEEE COINS) -- JUL 29-31, 2024 -- London, ENGLAND | en_US |
dc.relation.ispartofseries | International Conference on Omni-Layer Intelligent Systems | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Domain Name System (DNS) | en_US |
dc.subject | Cybersecurity | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Deep Neural Network (DNN) | en_US |
dc.subject | Natural Language Processing (NLP) | en_US |
dc.subject | Malicious Domain Detection | en_US |
dc.title | Comparing Deep Neural Networks and Machine Learning for Detecting Malicious Domain Name Registrations | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32d2136a-cb55-4ba5-9e30-1767c6f3b090 | |
relation.isAuthorOfPublication | e02bc683-b72e-4da4-a5db-ddebeb21e8e7 | |
relation.isAuthorOfPublication.latestForDiscovery | 32d2136a-cb55-4ba5-9e30-1767c6f3b090 |