Comparing Deep Neural Networks and Machine Learning for Detecting Malicious Domain Name Registrations

dc.authorscopusid58705861300
dc.authorscopusid57964038500
dc.authorscopusid6507328166
dc.authorscopusid6602924425
dc.contributor.authorÇolhak,F.
dc.contributor.authorEcevit,M.İ.
dc.contributor.authorDaǧ,H.
dc.contributor.authorCreutzburg,R.
dc.date.accessioned2024-10-15T19:42:47Z
dc.date.available2024-10-15T19:42:47Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempÇolhak F., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Ecevit M.İ., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Daǧ H., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Creutzburg R., SRH Berlin University of Applied Technology, Berlin School of Technology, Berlin, Germany, Technische Hochschule Brandenburg, Fachbereich Informatik und Medien, Brandenburg, Germanyen_US
dc.description.abstractThis study highlights the effectiveness of deep neural network (DNN) models, particularly those integrating natural language processing (NLP) and multilayer perceptron (MLP) techniques, in detecting malicious domain registrations compared to traditional machine learning (ML) approaches. The integrated DNN models significantly outperform traditional ML models. Notably, DNN models that incorporate both textual and numeric features demonstrate enhanced detection capabilities. The utilized Canine + MLP model achieves 85.81% accuracy and an 86.46% Fl-score on the MTLP Dataset. While traditional ML models offer advantages such as faster training times and smaller model sizes, their performance generally falls short compared to DNN models. This study underscores the trade-offs between computational efficiency and detection accuracy, suggesting that their superior performance often justifies the added costs despite higher resource requirements, © 2024 IEEE.en_US
dc.description.sponsorshipEuropean Commission, EC; Erasmus+, (101082683)en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi10.1109/COINS61597.2024.10622643
dc.identifier.endpage85en_US
dc.identifier.isbn979-835034959-7
dc.identifier.issn2996-5322
dc.identifier.scopus2-s2.0-85202789734
dc.identifier.scopusqualityN/A
dc.identifier.startpage82en_US
dc.identifier.urihttps://doi.org/10.1109/COINS61597.2024.10622643
dc.identifier.wosWOS:001298880300016
dc.identifier.wosqualityN/A
dc.institutionauthorEcevit, Mert İlhan
dc.institutionauthorDağ, Hasan
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024 -- 2024 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024 -- 29 July 2024 through 31 July 2024 -- London -- 201877en_US
dc.relation.ispartofseriesInternational Conference on Omni-Layer Intelligent Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCybersecurityen_US
dc.subjectDeep Neural Network (DNN)en_US
dc.subjectDomain Name System (DNS)en_US
dc.subjectMachine Learningen_US
dc.subjectMalicious Domain Detectionen_US
dc.subjectNatural Language Processing (NLP)en_US
dc.titleComparing Deep Neural Networks and Machine Learning for Detecting Malicious Domain Name Registrationsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication32d2136a-cb55-4ba5-9e30-1767c6f3b090
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery32d2136a-cb55-4ba5-9e30-1767c6f3b090

Files