Monoamin oksidaz tip B enzimine yönelik benzilamin molekülünün moleküler dinamik simülasyon analizi

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Kadir Has Üniversitesi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

1. ÖZET Bu çalışmada benzilamin molekülü Monoamin Oksidaz Tip B enzim içerisinde moleküler dinamik yöntemi ile simüle edildi. Elde edilen veriler yardımı ile, substrata enzime bağlanma dinamiğinin analizi ve bağlanma serbest enerji değişiminin hesaplanması gerçekleştirildi. Simülasyon boyunca elde edilen veriler moleküler mekanik parametreleri kullanılarak hesaplandı. Simülasyon işlemi için substrata hem su içerisinde hem de protein (enzim) içerisinde bağlı olacak şekilde iki ayrı ortam için, koordinat dosyalan oluşturuldu. Simülasyon boyunca substrat ve enzim moleküllerinin atomları arasındaki, etkileşim enerjileri olarak adlandırılan Van der Waals (VDW) ve elektrostatik enerjileri kaydedildi. Bu verilerden lineer etkileşim enerjisi (LIE) modeli kullanılarak substrata bağlanma serbest enerji değişimi elde edildi. Enerji hesaplamalarından substrata enzimin aktif bölgesinde, oldukça olumlu etkileşimlerle yerleştiğim söyleyebiliriz. Bu çalışmada, kullanılan yöntemin uzun süreli simülasyon için davranışı da test edildi. Moleküler dinamik (MD) simülasyonlarda genellikle kütle merkezinin translasyonel hareketi iptal edildiğinden sadece molekül içi hareketler simüle edilebilmektedir. Q MD programının da uzun süreli simulasyonda kütle merkezi hareketi yapmadığı verifiye edildi. Ligandın simülasyon boyunca belirgin bir translasyonel hareketi gözlenmemiştir. Çalışmada ek olarak aktif bölgedeki anahtar rolü oynayan amino asitlerin pKa kayma değerleri ve buradan da protonlarınla durumları saptanmıştır. Protonlanma bilgisi ve buna bağlı atomik parsiyel yük değerleri, bu enzimin aktif bölgesinin ileride daha ayrıntılı MD simülasyonlarmda rahatlıkla kullanılabilir.
2. SUMMARY In this study, molecular dynamics simulation of benzylamine molecule inside the Monoamine oxidase type B enzyme was carried. With the help of data obtained, the dynamics of binding of substrate to the enzyme was analyzed and calculation of the free energy change of binding was performed. The data that were obtained throughout the simulation were calculated using molecular mechanics parameters. For the simulation procedure, two separate coordinate files were prepared for two different environments; such that, the substrate in water alone and the substrate complexed in protein. Throughtout the simulation, the Van der Waals (VDW) and the electrostatic energies, that were also called the interaction energies, between atoms of the substrate and the protein molecules were recorded. From these data, the free energy change of binding was calculated using the linear interaction energy (LIE) model. From the energy calculations, it can be said that, ligand was located inside the active region with moderately favourable interactions. In this sturdy, the method used was also tested for long simulation period. In the molecular dynamics simulations, the center of mass (COM) translational motion is generally inactivated, so that only intramolecular motions were simulated. It was verified that Q MD program also did not perfromed COM motion in long simulation period. A remarkable translational motion of the ligand was not observed throughout the simulation. In the study additionally, pKa shift values and protonation conditions of the amino acids that play key role in the active region were determined. The protonation info and hence, the atomic partial charge values, can be used in more detailed simulations of the active region of this enzyme in future.

Description

Bu tezin, veri tabanı üzerinden yayınlanma izni bulunmamaktadır. Yayınlanma izni olmayan tezlerin basılı kopyalarına Üniversite kütüphaneniz aracılığıyla (TÜBESS üzerinden) erişebilirsiniz.

Keywords

Biyokimya, Biochemistry

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

1

End Page

41

Collections