Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks

dc.authorid Gunturk, Bahadir/0000-0003-0779-9620
dc.authorid Ates, Hasan/0000-0002-6842-1528
dc.authorid Marey, Ahmed/0000-0002-4566-4551
dc.authorid BAL, MUSTAFA/0000-0002-0151-0067
dc.authorwosid Gunturk, Bahadir/G-1609-2019
dc.authorwosid Ates, Hasan/M-5160-2013
dc.contributor.author Baykaş, Tunçer
dc.contributor.author Marey, Ahmed
dc.contributor.author Ates, Hasan F.
dc.contributor.author Baykas, Tuncer
dc.contributor.author Gunturk, Bahadir K.
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2023-10-19T15:11:55Z
dc.date.available 2023-10-19T15:11:55Z
dc.date.issued 2022
dc.department-temp [Bal, Mustafa; Marey, Ahmed; Ates, Hasan F.; Gunturk, Bahadir K.] Istanbul Medipol Univ, TR-34810 Istanbul, Turkey; [Baykas, Tuncer] Kadir Has Univ, TR-34083 Istanbul, Turkey en_US
dc.description.abstract Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [215E324] en_US
dc.description.sponsorship This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 215E324. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1109/LAWP.2022.3174357 en_US
dc.identifier.endpage 1566 en_US
dc.identifier.issn 1536-1225
dc.identifier.issn 1548-5757
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85132524371 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 1562 en_US
dc.identifier.uri https://doi.org/10.1109/LAWP.2022.3174357
dc.identifier.uri https://hdl.handle.net/20.500.12469/5274
dc.identifier.volume 21 en_US
dc.identifier.wos WOS:000835774100014 en_US
dc.identifier.wosquality Q2
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof Ieee Antennas and Wireless Propagation Letters en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Fixed Wireless Access En_Us
dc.subject Satellites en_US
dc.subject Shadow mapping en_US
dc.subject Training en_US
dc.subject Images En_Us
dc.subject Solid modeling en_US
dc.subject Deep learning en_US
dc.subject Wireless communication en_US
dc.subject Models En_Us
dc.subject Receivers en_US
dc.subject Deep learning en_US
dc.subject Fixed Wireless Access
dc.subject height map en_US
dc.subject Images
dc.subject regression en_US
dc.subject Models
dc.subject wireless channel parameter estimation en_US
dc.title Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5274.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text