Invariant Manifolds of Homoclinic Orbits and the Dynamical Consequences of a Super-Homoclinic: a Case Study in R4 With Z2-Symmetry and Integral of Motion

dc.authorid Bakrani, Sajjad/0000-0001-7814-0992
dc.contributor.author Bakrani, Sajjad
dc.contributor.author Lamb, Jeroen S. W.
dc.contributor.author Turaev, Dmitry
dc.date.accessioned 2023-10-19T15:11:32Z
dc.date.available 2023-10-19T15:11:32Z
dc.date.issued 2022
dc.department-temp [Bakrani, Sajjad; Lamb, Jeroen S. W.; Turaev, Dmitry] Imperial Coll London, Dept Math, London SW7 2AZ, England; [Bakrani, Sajjad] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey en_US
dc.description.abstract We consider a Z(2)-equivariant flow in R-4 with an integral of motion and a hyperbolic equilibrium with a transverse homoclinic orbit Gamma. We provide criteria for the existence of stable and unstable invariant manifolds of Gamma. We prove that if these manifolds intersect transversely, creating a so-called super-homoclinic, then in any neighborhood of this super-homoclinic there exist infinitely many multi-pulse homoclinic loops. An application to a system of coupled nonlinear Schrodinger equations is considered. (C) 2022 The Authors. Published by Elsevier Inc. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.jde.2022.04.002 en_US
dc.identifier.endpage 63 en_US
dc.identifier.issn 0022-0396
dc.identifier.issn 1090-2732
dc.identifier.scopus 2-s2.0-85129075632 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.jde.2022.04.002
dc.identifier.uri https://hdl.handle.net/20.500.12469/5060
dc.identifier.volume 327 en_US
dc.identifier.wos WOS:000819929700001 en_US
dc.identifier.wosquality Q1
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Academic Press Inc Elsevier Science en_US
dc.relation.ispartof Journal of Differential Equations en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Systems En_Us
dc.subject Classification En_Us
dc.subject Saddle En_Us
dc.subject Homoclinic en_US
dc.subject Systems
dc.subject Super-homoclinic en_US
dc.subject Classification
dc.subject Invariant manifold en_US
dc.subject Saddle
dc.subject Coupled Schrodinger equations en_US
dc.title Invariant Manifolds of Homoclinic Orbits and the Dynamical Consequences of a Super-Homoclinic: a Case Study in R4 With Z2-Symmetry and Integral of Motion en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5060.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text