Reconstructing Network Dynamics of Coupled Discrete Chaotic Units from Data
dc.authorid | Topal, Irem/0000-0002-4029-9954 | |
dc.authorid | Eroglu, Deniz/0000-0001-6725-6949 | |
dc.authorwosid | Eroglu, Deniz/F-9587-2013 | |
dc.contributor.author | Eroğlu, Deniz | |
dc.contributor.author | Eroglu, Deniz | |
dc.date.accessioned | 2023-10-19T15:11:33Z | |
dc.date.available | 2023-10-19T15:11:33Z | |
dc.date.issued | 2023 | |
dc.department-temp | [Topal, Irem; Eroglu, Deniz] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkiye | en_US |
dc.description.abstract | Reconstructing network dynamics from data is crucial for predicting the changes in the dynamics of complex systems such as neuron networks; however, previous research has shown that the reconstruction is possible under strong constraints such as the need for lengthy data or small system size. Here, we present a recovery scheme blending theoretical model reduction and sparse recovery to identify the governing equations and the interactions of weakly coupled chaotic maps on complex networks, easing unrealistic constraints for real-world applications. Learning dynamics and connectivity lead to detecting critical transitions for parameter changes. We apply our technique to realistic neuronal systems with and without noise on a real mouse neocortex and artificial networks. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [118C236]; BAGEP Award of the Science Academy | en_US |
dc.description.sponsorship | We are indebted to Tiago Pereira, Matteo Tanzi, Sajjad Bakrani, Arash Rezaeinazhad, Thomas Peron, and Jeroen Lamb for enlightening discussions. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 118C236. D. E. acknowledges support from the BAGEP Award of the Science Academy. | en_US |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1103/PhysRevLett.130.117401 | en_US |
dc.identifier.issn | 0031-9007 | |
dc.identifier.issn | 1079-7114 | |
dc.identifier.issue | 11 | en_US |
dc.identifier.pmid | 37001085 | en_US |
dc.identifier.scopus | 2-s2.0-85151297304 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1103/PhysRevLett.130.117401 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5079 | |
dc.identifier.volume | 130 | en_US |
dc.identifier.wos | WOS:000954803100013 | en_US |
dc.identifier.wosquality | Q1 | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Physical Soc | en_US |
dc.relation.ispartof | Physical Review Letters | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Reconstructing Network Dynamics of Coupled Discrete Chaotic Units from Data | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bae555f-a8aa-4b95-bcfe-54cc47812e13 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bae555f-a8aa-4b95-bcfe-54cc47812e13 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 5079.pdf
- Size:
- 10.97 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text