Reconstructing Network Dynamics of Coupled Discrete Chaotic Units From Data

dc.contributor.author Topal, Irem
dc.contributor.author Eroglu, Deniz
dc.contributor.other Molecular Biology and Genetics
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:11:33Z
dc.date.available 2023-10-19T15:11:33Z
dc.date.issued 2023
dc.description.abstract Reconstructing network dynamics from data is crucial for predicting the changes in the dynamics of complex systems such as neuron networks; however, previous research has shown that the reconstruction is possible under strong constraints such as the need for lengthy data or small system size. Here, we present a recovery scheme blending theoretical model reduction and sparse recovery to identify the governing equations and the interactions of weakly coupled chaotic maps on complex networks, easing unrealistic constraints for real-world applications. Learning dynamics and connectivity lead to detecting critical transitions for parameter changes. We apply our technique to realistic neuronal systems with and without noise on a real mouse neocortex and artificial networks. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [118C236]; BAGEP Award of the Science Academy en_US
dc.description.sponsorship We are indebted to Tiago Pereira, Matteo Tanzi, Sajjad Bakrani, Arash Rezaeinazhad, Thomas Peron, and Jeroen Lamb for enlightening discussions. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 118C236. D. E. acknowledges support from the BAGEP Award of the Science Academy. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1103/PhysRevLett.130.117401 en_US
dc.identifier.issn 0031-9007
dc.identifier.issn 1079-7114
dc.identifier.scopus 2-s2.0-85151297304 en_US
dc.identifier.uri https://doi.org/10.1103/PhysRevLett.130.117401
dc.identifier.uri https://hdl.handle.net/20.500.12469/5079
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Amer Physical Soc en_US
dc.relation.ispartof Physical Review Letters en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Reconstructing Network Dynamics of Coupled Discrete Chaotic Units From Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Topal, Irem/0000-0002-4029-9954
gdc.author.id Eroglu, Deniz/0000-0001-6725-6949
gdc.author.institutional Eroğlu, Deniz
gdc.author.wosid Eroglu, Deniz/F-9587-2013
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Topal, Irem; Eroglu, Deniz] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkiye en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 130 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4324352288
gdc.identifier.pmid 37001085 en_US
gdc.identifier.wos WOS:000954803100013 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.7943952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords FOS: Physical sciences
gdc.oaire.keywords Dynamical Systems (math.DS)
gdc.oaire.keywords Mathematics - Dynamical Systems
gdc.oaire.keywords Adaptation and Self-Organizing Systems (nlin.AO)
gdc.oaire.keywords Nonlinear Sciences - Adaptation and Self-Organizing Systems
gdc.oaire.popularity 8.09172E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 2.515
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 9
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 13
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.wos.citedcount 13
relation.isAuthorOfPublication 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication.latestForDiscovery 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5079.pdf
Size:
10.97 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text