Bayesian compressive sensing for ultra-wideband channel models

dc.contributor.authorErküçük, Serhat
dc.contributor.authorErküçük, Serhat
dc.contributor.authorCirpan, Hakan Ali
dc.date.accessioned2019-06-27T08:04:19Z
dc.date.available2019-06-27T08:04:19Z
dc.date.issued2012
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractConsidering the sparse structure of ultra-wideband (UWB) channels compressive sensing (CS) is suitable for UWB channel estimation. Among various implementations of CS the inclusion of Bayesian framework has shown potential to improve signal recovery as statistical information related to signal parameters is considered. In this paper we study the channel estimation performance of Bayesian CS (BCS) for various UWB channel models and noise conditions. Specifically we investigate the effects of (i) sparse structure of standardized IEEE 802.15.4a channel models (ii) signal-to-noise ratio (SNR) regions and (iii) number of measurements on the BCS channel estimation performance and compare them to the results of l(1)-norm minimization based estimation which is widely used for sparse channel estimation. The study shows that BCS exhibits superior performance at higher SNR regions only for adequate number of measurements and sparser channel models (e. g. CM1 and CM2). Based on the results of this study BCS method or the l(1)-norm minimization method can be preferred over the other for different system implementation conditions.en_US]
dc.identifier.citation6
dc.identifier.doi10.1109/TSP.2012.6256307en_US
dc.identifier.endpage324
dc.identifier.isbn9781467311182
dc.identifier.scopus2-s2.0-84866944635en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage320en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/925
dc.identifier.urihttps://doi.org/10.1109/TSP.2012.6256307
dc.identifier.wosWOS:000308143100061en_US
dc.identifier.wosqualityN/A
dc.institutionauthorErküçük, Serhaten_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.journal2012 35th International Conference on Telecommunications and Signal Processing (TSP)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBayesian compressive sensing (BCS)en_US
dc.subjectChannel modelsen_US
dc.subjectl(1)-norm minimizationen_US
dc.subjectUltra-wideband (UWB) channel estimationen_US
dc.titleBayesian compressive sensing for ultra-wideband channel modelsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery440e977b-46c6-40d4-b970-99b1e357c998

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bayesian compressive sensing for ultra-wideband channel models.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description: