Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning

gdc.relation.journal Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en_US
dc.contributor.author Karadayı, Yıldız
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2020-12-22T22:01:40Z
dc.date.available 2020-12-22T22:01:40Z
dc.date.issued 2020
dc.description.abstract Techniques used for spatio-temporal anomaly detection in an unsupervised settings has attracted great attention in recent years. It has extensive use in a wide variety of applications such as: medical diagnosis, sensor events analysis, earth science, fraud detection systems, etc. Most of the real world time series datasets have spatial dimension as additional context such as geographic location. Although many temporal data are spatio-temporal in nature, existing techniques are limited to handle both contextual (spatial and temporal) attributes during anomaly detection process. Taking into account of spatial context in addition to temporal context would help uncovering complex anomaly types and unexpected and interesting knowledge about problem domain. In this paper, a new approach to the problem of unsupervised anomaly detection in a multivariate spatio-temporal dataset is proposed using a hybrid deep learning framework. The proposed approach is composed of a Long Short Term Memory (LSTM) Encoder and Deep Neural Network (DNN) based classifier to extract spatial and temporal contexts. Although the approach has been employed on crime dataset from San Francisco Police Department to detect spatio-temporal anomalies, it can be applied to any spatio-temporal datasets. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-030-39098-3_13 en_US
dc.identifier.issn 0302-9743 en_US
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-85082124850 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3633
dc.identifier.uri https://doi.org/10.1007/978-3-030-39098-3_13
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep learning en_US
dc.subject Multivariate en_US
dc.subject Spatio-temporal data en_US
dc.subject Unsupervised anomaly detection en_US
dc.title Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Karadayı, Yıldız en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 182 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 167 en_US
gdc.description.volume 11986 en_US
gdc.identifier.openalex W3001426329
gdc.identifier.wos WOS:000655391400013 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.8167195E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Unsupervised anomaly detection
gdc.oaire.keywords Multivariate
gdc.oaire.keywords Spatio-temporal data
gdc.oaire.popularity 3.6333854E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.673
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 4
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 32
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files