Improving Diabetic Retinopathy Detection Using Patchwise Cnn With Bigru Model

dc.authorscopusid57206483065
dc.authorscopusid57215312808
dc.contributor.authorDarici,M.B.
dc.contributor.authorYigit,G.
dc.date.accessioned2024-06-23T21:39:21Z
dc.date.available2024-06-23T21:39:21Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-tempDarici M.B., Kadir Has University, Department of Electrical-Electronics Engineering, Istanbul, Turkey; Yigit G., Kadir Has University, Department of Computer Engineering, Istanbul, Turkeyen_US
dc.description.abstractThis study addresses Diabetic Retinopathy (DR), a diabetes complication that can lead to vision loss if not promptly diagnosed and treated. Recent advances in deep learning have shown promising results in detecting DR from retinal images. The study introduces a novel patch-based CNN-biGRU model for DR detection. The proposed model extracts patches from retinal images employing a sliding window strategy and then uses a Convolutional Neural Network (CNN) architecture to extract features from each patch. The features extracted from each patch are then concatenated, and a 4-layer bidirectional Gated Recurrent Unit (biGRU) is applied to predict the whole image. We assessed the proposed model on a publicly available dataset named APTOS 2019 Blindness Detection and achieved an accuracy of 73.5%, outperforming existing state-of-the-art approaches. The given patch-based CNN model can improve the accuracy of DR detection and aims to assist ophthalmologists in making more accurate diagnoses. © 2023 IEEE.en_US
dc.identifier.citation1
dc.identifier.doi10.1109/UBMK59864.2023.10286722
dc.identifier.endpage10en_US
dc.identifier.isbn979-835034081-5
dc.identifier.scopus2-s2.0-85177597833
dc.identifier.startpage6en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK59864.2023.10286722
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5862
dc.institutionauthorDarıcı, Muazzez Buket
dc.institutionauthorYiğit, Gülsüm
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering -- 8th International Conference on Computer Science and Engineering, UBMK 2023 -- 13 September 2023 through 15 September 2023 -- Burdur -- 193873en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectautomatic diagnosisen_US
dc.subjectbiGRUen_US
dc.subjectCNNsen_US
dc.subjectdiabetic retinopathyen_US
dc.subjectGRUen_US
dc.subjectpatched-based approachen_US
dc.titleImproving Diabetic Retinopathy Detection Using Patchwise Cnn With Bigru Modelen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscoveryb5442f04-afe8-48f2-86ef-b8c23df8b01e

Files