Improving Diabetic Retinopathy Detection Using Patchwise Cnn With Bigru Model

dc.authorscopusid 57206483065
dc.authorscopusid 57215312808
dc.contributor.author Darici,M.B.
dc.contributor.author Darıcı, Muazzez Buket
dc.contributor.author Yigit,G.
dc.contributor.author Yiğit, Gülsüm
dc.contributor.other Computer Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2024-06-23T21:39:21Z
dc.date.available 2024-06-23T21:39:21Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp Darici M.B., Kadir Has University, Department of Electrical-Electronics Engineering, Istanbul, Turkey; Yigit G., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey en_US
dc.description.abstract This study addresses Diabetic Retinopathy (DR), a diabetes complication that can lead to vision loss if not promptly diagnosed and treated. Recent advances in deep learning have shown promising results in detecting DR from retinal images. The study introduces a novel patch-based CNN-biGRU model for DR detection. The proposed model extracts patches from retinal images employing a sliding window strategy and then uses a Convolutional Neural Network (CNN) architecture to extract features from each patch. The features extracted from each patch are then concatenated, and a 4-layer bidirectional Gated Recurrent Unit (biGRU) is applied to predict the whole image. We assessed the proposed model on a publicly available dataset named APTOS 2019 Blindness Detection and achieved an accuracy of 73.5%, outperforming existing state-of-the-art approaches. The given patch-based CNN model can improve the accuracy of DR detection and aims to assist ophthalmologists in making more accurate diagnoses. © 2023 IEEE. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/UBMK59864.2023.10286722
dc.identifier.endpage 10 en_US
dc.identifier.isbn 979-835034081-5
dc.identifier.scopus 2-s2.0-85177597833
dc.identifier.startpage 6 en_US
dc.identifier.uri https://doi.org/10.1109/UBMK59864.2023.10286722
dc.identifier.uri https://hdl.handle.net/20.500.12469/5862
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof UBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering -- 8th International Conference on Computer Science and Engineering, UBMK 2023 -- 13 September 2023 through 15 September 2023 -- Burdur -- 193873 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject automatic diagnosis en_US
dc.subject biGRU en_US
dc.subject CNNs en_US
dc.subject diabetic retinopathy en_US
dc.subject GRU en_US
dc.subject patched-based approach en_US
dc.title Improving Diabetic Retinopathy Detection Using Patchwise Cnn With Bigru Model en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files