Securing AI Systems: A Comprehensive Overview of Cryptographic Techniques for Enhanced Confidentiality and Integrity

dc.authoridMOLLAKUQE, Elissa/0000-0003-0508-105X
dc.authorscopusid59232916800
dc.authorscopusid59232916900
dc.authorscopusid59233422300
dc.authorscopusid59233764600
dc.authorscopusid6507328166
dc.authorscopusid37010805100
dc.authorscopusid37010805100
dc.authorwosidMOLLAKUQE, ELISSA/HKO-9388-2023
dc.contributor.authorDağ, Hasan
dc.contributor.authorUdechukwu, Izuchukwu Patrick
dc.contributor.authorIbrahim, Isiaq Bolaji
dc.contributor.authorChukwu, Ikechukwu John
dc.contributor.authorDag, Hasan
dc.contributor.authorDimitrova, Vesna
dc.contributor.authorMollakuqe, Elissa
dc.date.accessioned2024-10-15T19:38:59Z
dc.date.available2024-10-15T19:38:59Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Garcia, Jose Luis Cano; Udechukwu, Izuchukwu Patrick; Ibrahim, Isiaq Bolaji; Chukwu, Ikechukwu John; Dag, Hasan; Mollakuqe, Elissa] Kadir Has Univ, Istanbul, Turkiye; [Dimitrova, Vesna] Cyril & Methodius Univ, Skopje, North Macedoniaen_US
dc.descriptionMOLLAKUQE, Elissa/0000-0003-0508-105Xen_US
dc.description.abstractThe rapid evolution of artificial intelligence (AI) has introduced transformative changes across industries, accompanied by escalating security concerns. This paper contributes to the imperative need for robust security measures in AI systems based on the application of cryptographic techniques. This research analyzes AI-ML systems vulnerabilities and associated risks and identifies existing cryptographic methods that could constitute security measures to mitigate such risks. Information assets subject to cyberattacks are identified, such as training data and model parameters, followed by a description of existing encryption algorithms and a suggested approach to use a suitable technique, such as homomorphic encryption CKKS, along with digital signatures based on ECDSA to protect the digital assets through all the AI system life cycle. These methods aim to safeguard sensitive data, algorithms, and AI-generated content from unauthorized access and tampering. The outcome offers potential and practical solutions against privacy breaches, adversarial attacks, and misuse of AI-generated content. Ultimately, this work aspires to bolster public trust in AI technologies, fostering innovation in a secure and reliable AI-driven landscape.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi10.1109/MECO62516.2024.10577883
dc.identifier.endpage257en_US
dc.identifier.isbn9798350387568
dc.identifier.isbn9798350387575
dc.identifier.issn2377-5475
dc.identifier.scopus2-s2.0-85199511185
dc.identifier.scopusqualityN/A
dc.identifier.startpage250en_US
dc.identifier.urihttps://doi.org/10.1109/MECO62516.2024.10577883
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6301
dc.identifier.wosWOS:001268606200069
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof13th Mediterranean Conference on Embedded Computing (MECO) -- JUN 11-14, 2024 -- Budva, MONTENEGROen_US
dc.relation.ispartofseriesMediterranean Conference on Embedded Computing
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectCryptographyen_US
dc.subjectSecurityen_US
dc.subjectNeural Networksen_US
dc.titleSecuring AI Systems: A Comprehensive Overview of Cryptographic Techniques for Enhanced Confidentiality and Integrityen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscoverye02bc683-b72e-4da4-a5db-ddebeb21e8e7

Files