Bayesian and Graph Theory Approaches To Develop Strategic Early Warning Systems for the Milk Market
dc.contributor.author | Gürpınar, Furkan | |
dc.contributor.author | Bisson, Christophe | |
dc.contributor.author | Diner, Öznur Yaşar | |
dc.date.accessioned | 2019-06-27T08:02:28Z | |
dc.date.available | 2019-06-27T08:02:28Z | |
dc.date.issued | 2015 | |
dc.department | Fakülteler, Fen - Edebiyat Fakültesi, Enformasyon Teknolojileri Bölümü | en_US |
dc.description.abstract | This paper presents frameworks for developing a Strategic Early Warning System allowing the estimatation of the future state of the milk market. Thus this research is in line with the recent call from the EU commission for tools which help to better address such a highly volatile market. We applied different multivariate time series regression and Bayesian networks on a pre-determined map of relations between macro economic indicators. The evaluation of our findings with root mean square error (RMSE) performance score enhances the robustness of the prediction model constructed. Finally we construct a graph to represent the major factors that effect the milk industry and their relationships. We use graph theoretical analysis to give several network measures for this social network | en_US] |
dc.description.abstract | such as centrality and density. | en_US] |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1007/978-3-319-16486-1_52 | en_US |
dc.identifier.endpage | 542 | |
dc.identifier.isbn | 978-3-319-16486-1 | |
dc.identifier.isbn | 978-3-319-16485-4 | |
dc.identifier.issn | 2194-5357 | en_US |
dc.identifier.issn | 2194-5357 | |
dc.identifier.scopus | 2-s2.0-84926297321 | en_US |
dc.identifier.startpage | 533 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/625 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-16486-1_52 | |
dc.identifier.volume | 353 | en_US |
dc.identifier.wos | WOS:000381744400052 | en_US |
dc.institutionauthor | Bisson, Christophe | en_US |
dc.institutionauthor | A. Bısson, Chrıstophe Louıs | |
dc.institutionauthor | Yaşar Diner, Öznur | |
dc.language.iso | en | en_US |
dc.publisher | Springer-Verlag Berlin | en_US |
dc.relation.journal | New Contributions in Information Systems And Technologies, Vol 1, Pt 1 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Strategic Early Warning System | en_US |
dc.subject | Bayesian networks | en_US |
dc.subject | Graph theory | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Milk | en_US |
dc.title | Bayesian and Graph Theory Approaches To Develop Strategic Early Warning Systems for the Milk Market | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 020945e6-991f-4ffd-9772-ae1d7018acaa | |
relation.isAuthorOfPublication | 84ac79d3-823a-4abf-9b15-e1383ec8a9f5 | |
relation.isAuthorOfPublication.latestForDiscovery | 020945e6-991f-4ffd-9772-ae1d7018acaa |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bayesian and Graph Theory Approaches to Develop Strategic Early Warning Systems for the Milk Market.pdf
- Size:
- 240.81 KB
- Format:
- Adobe Portable Document Format
- Description: