Compressive Sensing for Ultra-Wideband Channel Estimation: on the Sparsity Assumption of Ultra-Wideband Channels

gdc.relation.journal International Journal of Communication Systems en_US
dc.contributor.author Başaran, Mehmet
dc.contributor.author Erküçük, Serhat
dc.contributor.author Cirpan, Hakan Ali
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:02:45Z
dc.date.available 2019-06-27T08:02:45Z
dc.date.issued 2014
dc.description.abstract Due to the sparse structure of ultra-wideband (UWB) multipath channels there has been a considerable amount of interest in applying the compressive sensing (CS) theory to UWB channel estimation. The main consideration of the related studies is to propose different implementations of the CS theory for the estimation of UWB channels which are assumed to be sparse. In this study we investigate the suitability of standardized UWB channel models to be used with the CS theory. In other words we question the sparsity assumption of realistic UWB multipath channels. For that we particularly investigate the effects of IEEE 802.15.4a UWB channel models and the selection of channel resolution both on channel estimation and system performances from a practical implementation point of view. In addition we compare the channel estimation performance with the Cramer-Rao lower bound for various channel models and number of measurements. The study shows that although UWB channel models for residential environments (e.g. channel models CM1 and CM2) exhibit a sparse structure yielding a reasonable channel estimation performance channel models for industrial environments (e.g. CM8) may not be treated as having a sparse structure due to multipaths arriving densely. Furthermore it is shown that the sparsity increased by channel resolution can improve the channel estimation performance significantly at the expense of increased receiver processing. Copyright (c) 2013 John Wiley & Sons Ltd. en_US]
dc.identifier.citationcount 11
dc.identifier.doi 10.1002/dac.2548 en_US
dc.identifier.issn 1074-5351 en_US
dc.identifier.issn 1099-1131 en_US
dc.identifier.issn 1074-5351
dc.identifier.issn 1099-1131
dc.identifier.scopus 2-s2.0-84911959224 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/679
dc.identifier.uri https://doi.org/10.1002/dac.2548
dc.language.iso en en_US
dc.publisher Wiley-Blackwell en_US
dc.relation.ispartof International Journal of Communication Systems
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Compressive Sensing (CS) en_US
dc.subject Ultra-wideband (UWB) channel estimation en_US
dc.subject IEEE 802 en_US
dc.subject 15 en_US
dc.subject 4a channel models en_US
dc.subject Channel resolution en_US
dc.title Compressive Sensing for Ultra-Wideband Channel Estimation: on the Sparsity Assumption of Ultra-Wideband Channels en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Erküçük, Serhat en_US
gdc.author.institutional Erküçük, Serhat
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 3398
gdc.description.issue 11
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3383 en_US
gdc.description.volume 27 en_US
gdc.identifier.openalex W2147784306
gdc.identifier.wos WOS:000345306300059 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.732913E-9
gdc.oaire.isgreen true
gdc.oaire.keywords IEEE 802
gdc.oaire.keywords Ultra-wideband (UWB) channel estimation
gdc.oaire.keywords 4a channel models
gdc.oaire.keywords 15
gdc.oaire.keywords Compressive Sensing (CS)
gdc.oaire.keywords Channel resolution
gdc.oaire.popularity 1.1764786E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 1.652
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 9
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.wos.citedcount 12
relation.isAuthorOfPublication 440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery 440e977b-46c6-40d4-b970-99b1e357c998
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Compressive sensing for ultra wideband channel estimation onthe sparsity assumption of ultra wideband channels.pdf
Size:
642.77 KB
Format:
Adobe Portable Document Format
Description: