Wavelet-Based Cognitive Scma System for Mmwave 5g Communication Networks

dc.contributor.author Hosseini, Haleh
dc.contributor.author Erküçük, Serhat
dc.contributor.author Anpalagan, Alagan
dc.contributor.author Raahemifar, Kaamran
dc.contributor.author Erküçük, Serhat
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2019-06-27T08:01:21Z
dc.date.available 2019-06-27T08:01:21Z
dc.date.issued 2017
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract Fifth generation (5G) communication networks can achieve high spectral efficiency using sparse code multiple access (SCMA) scheme when large number of users are trying to transmit their data simultaneously. The sparsity of SCMA codewords offers the possibility of applying a low-complexity message passing algorithm as an alternative to maximum likelihood detector. However the requirement of densely deployed 5G users is to opportunistically explore new frequencies via cognitive features to overcome spectrum scarcity challenges. In this study spectrum sensing enables cognitive radio capabilities for the SCMA system applied in millimetre wave (mmWave) 5G communications. Proposed cognitive SCMA system can sense the spectrum holes and adapt the transmission in order to utilise the available subcarriers. Besides wavelet packet transform based techniques are used instead of conventional Fourier-based spectrum sensing (FSS) and orthogonal frequency-division multiple access (OFDMA). Wavelet packet spectrum sensing offers more accurate estimation of frequency and power compared with FSS. On the other hand wavelet packet multiple access is more flexible and robust against interference compared with OFDMA. The simulation results verify that the proposed method can significantly improve the performance of SCMA system in terms of probabilities of false alarm and detection and symbol error rate. en_US]
dc.identifier.citationcount 14
dc.identifier.doi 10.1049/iet-com.2016.0976 en_US
dc.identifier.endpage 836
dc.identifier.issn 1751-8628 en_US
dc.identifier.issn 1751-8636 en_US
dc.identifier.issn 1751-8628
dc.identifier.issn 1751-8636
dc.identifier.issue 6
dc.identifier.scopus 2-s2.0-85019059086 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 831 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/352
dc.identifier.uri https://doi.org/10.1049/iet-com.2016.0976
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:000400847500008 en_US
dc.institutionauthor Erküçük, Serhat en_US
dc.language.iso en en_US
dc.publisher Inst Engineering Technology-IET en_US
dc.relation.journal Iet Communications en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 17
dc.subject 5G mobile communication en_US
dc.subject Multi-access systems en_US
dc.subject Maximum likelihood detection en_US
dc.subject Wavelet transforms en_US
dc.subject Error statistics en_US
dc.subject Wavelet-based cognitive SCMA system en_US
dc.subject MmWave 5G communication networks en_US
dc.subject Sparse code multiple access scheme en_US
dc.subject Maximum likelihood detection en_US
dc.subject Wavelet packet transform based technique en_US
dc.subject Symbol error rate en_US
dc.title Wavelet-Based Cognitive Scma System for Mmwave 5g Communication Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 14
dspace.entity.type Publication
relation.isAuthorOfPublication 440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery 440e977b-46c6-40d4-b970-99b1e357c998
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files