Fault-Tolerant Training of Neural Networks in the Presence of Mos Transistor Mismatches

gdc.relation.journal IEEE Transactions on Circuits And Systems II-Express Briefs en_US
dc.contributor.author Öğrenci, Arif Selçuk
dc.contributor.author Dündar, Günhan
dc.contributor.author Balkır, Sina
dc.date.accessioned 2019-06-27T08:01:05Z
dc.date.available 2019-06-27T08:01:05Z
dc.date.issued 2001
dc.description.abstract Analog techniques are desirable for hardware implementation of neural networks due to their numerous advantages such as small size low power and high speed. However these advantages are often offset by the difficulty in the training of analog neural network circuitry. In particular training of the circuitry by software based on hardware models is impaired by statistical variations in the integrated circuit production process resulting in performance degradation. In this paper a new paradigm of noise injection during training for the reduction of this degradation is presented. The variations at the outputs of analog neural network circuitry are modeled based on the transistor-level mismatches occurring between identically designed transistors Those variations are used as additive noise during training to increase the fault tolerance of the trained neural network. The results of this paradigm are confirmed via numerical experiments and physical measurements and are shown to be superior to the case of adding random noise during training. en_US]
dc.identifier.citationcount 10
dc.identifier.doi 10.1109/82.924069 en_US
dc.identifier.issn 1549-7747 en_US
dc.identifier.issn 1558-3791 en_US
dc.identifier.issn 1549-7747
dc.identifier.issn 1558-3791
dc.identifier.issn 1057-7130
dc.identifier.scopus 2-s2.0-0035268207 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/245
dc.identifier.uri https://doi.org/10.1109/82.924069
dc.language.iso en en_US
dc.publisher IEEE-INST Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Backpropagation en_US
dc.subject Neural network hardware en_US
dc.subject Neural network training en_US
dc.subject Transistor mismatch en_US
dc.title Fault-Tolerant Training of Neural Networks in the Presence of Mos Transistor Mismatches en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Öğrenci, Arif Selçuk en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 281
gdc.description.issue 3
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 272 en_US
gdc.description.volume 48 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2165322024
gdc.identifier.wos WOS:000168916700005 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 3.2918361E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Transistor mismatch
gdc.oaire.keywords Neural network hardware
gdc.oaire.keywords Backpropagation
gdc.oaire.keywords Neural network training
gdc.oaire.popularity 5.4949307E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 11
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.wos.citedcount 11
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fault-Tolerant Training of Neural Networks in the.pdf
Size:
205.54 KB
Format:
Adobe Portable Document Format
Description: