Yapısal ve Mutasyonel Çalışmalar: Nmda Tipi Glutamat Reseptörü ve Format Dehidrogenaz Enziminin Moleküler Dinamik Simülasyonları
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Yapısal biyoloji ve moleküler dinamik (MD) simülasyon çalışmaları, moleküler düzeyde moleküller arası/içi etkileşimleri anlamanın temellerinden, ilaç ve protein tasarımının önde gelen yöntemlerinden biridir. Bu tez, iki farklı alandaki protein simülasyonlarından oluşmaktadır: Sinir hücrelerinde elektrik sinyali yayılımında bir iyon kanalı reseptör kompleksi olan N-metil-D-aspartat reseptörü (NMDAR) ve formatın bikarbonata biyokatalizinde format dehidrojenaz enzimi (FDH). Tezin ilk amacı NMDAR iyon kanalının açık yapısını mutasyonlarla elde etmektir. İkinci amaç ise allosterik bölgede Asp188Arg mutasyonu yaparak FDH enziminin hem format hem de bikarbonat substratları ile etkileşimlerini anlamaktır. Bu mutasyon deneysel olarak FDH'nin bikarbonat/CO2 yakalama için kullanımı yönünde olan ters reaksiyon için daha aktif bir enzim yaratmıştır. Bu amaçla, nano ölçekli moleküler dinamik (NAMD) uygulaması, kök-ortalama-kare sapması, kök-ortalama-kare dalgalanması ve protein-ligand etkileşim analizi yöntemleriyle birlikte simülasyonları çalıştırmak için kullanılmıştır. İlk durumda, NMDAR iyon kanalının üst kapısındaki Lurcher motifindeki alanin (A7), deneysel çalışmalara dayanarak arginin/tirozin ile değiştirildi. Analiz sonucunda NMDAR iyon kanalının açık yapısı elde edildi. FDH'nin MD simülasyonlarında, bikarbonat bağlı yapı, enzimin subtrat ve koenzim bağlanma bölgelerini ayıran önemli bir tuz köprüsünü korumuştur. Ek olarak, bağlanma bölgesinden substrat taşınımı, vahşi tip ve mutasyona uğramış yapılar için farklı yollar sergilemiştir. Her iki protein sistemi için de MD, harici pertürbasyonların proteinlerin yapısı ve işlevi, yani işlevsel mutasyonlar üzerindeki etkisini incelemek için ana araç olarak kullanılmıştır. Her iki protein de hareketlerin zaman ölçeği, sistem boyutu ve istenen ters reaksiyon yönünde düşük enzim aktivitesi nedeniyle yapısal bir çalışma için karmaşık sistemler oluşturmuştur.
Structural biology and molecular dynamics (MD) simulation studies are one of the foundations for understanding inter/intramolecular interactions at the molecular level and one of the leading methods for drug and protein design. This thesis consists of protein simulations from two different fields: N-methyl-D-aspartate receptor (NMDAR), an ion channel receptor complex in the electric signal propagation in nerve cells, and formate dehydrogenase enzyme (FDH) in the biocatalysis of formate to bicarbonate. The first aim of the thesis is to obtain the open structure of the NMDAR ion channel by mutations. The second aim is to understand the interactions of the FDH enzyme with both formate and bicarbonate substrates by mutating Asp188Arg in the allosteric site. This mutation experimentally created a more active enzyme for the reverse reaction, which is in the direction of usage of FDH for bicarbonate/CO2 capture. For this purpose, the nanoscale molecular dynamics (NAMD) application was used to run the simulations together with root-mean-square deviation, root-mean-square fluctuation, and protein-ligand interaction analysis methods. In the NMDAR, alanine (A7) in the Lurcher motif in the upper gate of the NMDAR ion channel was swapped with arginine/tyrosine, based on the experimental studies. Result of the analysis, the open structure of the NMDAR ion channel was obtained. In MD simulations of FDH, bicarbonate-bound structure preserved an important salt bridge separating subtrate and coenzyme binding sites of the enzyme. Additionally, substrate transport from the binding site displayed different paths for wildtype and mutated structures. For both protein systems, MD is utilized as the main tool to study the effect of external perturbations on the structure and function of the proteins, namely functional mutations. Both proteins constituted complex systems for a structural study because of the time scale of the motions, system size, and low enzyme activity in the desired reverse reaction direction.
Structural biology and molecular dynamics (MD) simulation studies are one of the foundations for understanding inter/intramolecular interactions at the molecular level and one of the leading methods for drug and protein design. This thesis consists of protein simulations from two different fields: N-methyl-D-aspartate receptor (NMDAR), an ion channel receptor complex in the electric signal propagation in nerve cells, and formate dehydrogenase enzyme (FDH) in the biocatalysis of formate to bicarbonate. The first aim of the thesis is to obtain the open structure of the NMDAR ion channel by mutations. The second aim is to understand the interactions of the FDH enzyme with both formate and bicarbonate substrates by mutating Asp188Arg in the allosteric site. This mutation experimentally created a more active enzyme for the reverse reaction, which is in the direction of usage of FDH for bicarbonate/CO2 capture. For this purpose, the nanoscale molecular dynamics (NAMD) application was used to run the simulations together with root-mean-square deviation, root-mean-square fluctuation, and protein-ligand interaction analysis methods. In the NMDAR, alanine (A7) in the Lurcher motif in the upper gate of the NMDAR ion channel was swapped with arginine/tyrosine, based on the experimental studies. Result of the analysis, the open structure of the NMDAR ion channel was obtained. In MD simulations of FDH, bicarbonate-bound structure preserved an important salt bridge separating subtrate and coenzyme binding sites of the enzyme. Additionally, substrate transport from the binding site displayed different paths for wildtype and mutated structures. For both protein systems, MD is utilized as the main tool to study the effect of external perturbations on the structure and function of the proteins, namely functional mutations. Both proteins constituted complex systems for a structural study because of the time scale of the motions, system size, and low enzyme activity in the desired reverse reaction direction.
Description
Keywords
Biyofizik, Biyokimya, Biyoloji, Makromoleküler yapı, Modeller-moleküler, Biophysics, Biochemistry, Biology, Macromoleculer structure, Models-molecular
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
125