• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidase: Synthesis biological evaluation and structural determinants of MAO-A and MAO-B selectivity

Thumbnail
View/Open
New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidas Synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity.pdf (4.188Mb)
Date
2009
Author
Gökhan-Kelekçi, Nesrin
Koyunoğlu, Semra
Yabanoğlu-Çiftçi, Samiye
Yelekçi, Kemal
Özgen, Özen
Uçar, Gülberk
Erol, Kevser
Kendi, Engin
Yeşilada, Akguel
Abstract
A new series of pyrazoline derivatives were prepared starting from a quinazolinone ring and evaluated for antidepressant anxiogenic and MAO-A and -B inhibitory activities by in vivo and in vitro tests respectively. Most of the synthesized compounds showed high activity against both the MAO-A (compounds 4a-4h 4j-4n and 5g-5l) and the MAO-B (compounds 4i and 5a-5f) isoforms. However none of the novel compounds showed antidepressant activity except for 4b. The reason for such biological properties was investigated by computational methods using recently published crystallographic models of MAO-A and MAO-B. The differences in the intermolecular hydrophobic and H-bonding of ligands to the active site of each MAO isoform were correlated to their biological data. Compounds 4i 4k 5e 5i and 5l were chosen for their ability to reversibly inhibit MAO-B and MAO-A and the availability of experimental inhibition data. Observation of the docked positions of these ligands revealed interactions with many residues previously reported to have an effect on the inhibition of the enzyme. Among the pyrazoline derivatives it appears that the binding interactions for this class of compounds are mostly hydrophobic. All have potential edge-to-face hydrophobic interactions with F343 as well as pi-pi stacking with Y398 and other hydrophobic interactions with L171. Strong hydrophobic and H-bonding interactions in the MAO recognition of 4i could be the reason why this compound shows selectivity toward the MAO-B isoform. The very high MAO-B selectivity for 4i can be also explained in terms of the distance between the FAD and the compound which was greater in the complex of MAO-A-4i as compared to the corresponding MAO-B complex. (C) 2008 Elsevier Ltd. All rights reserved.

Source

Bioorganic & Medicinal Chemistry

Issue

2

Volume

17

Pages

675-689

URI

https://hdl.handle.net/20.500.12469/1105
https://doi.org/10.1016/j.bmc.2008.11.068

Collections

  • Araştırma Çıktıları / Scopus [1565]
  • Araştırma Çıktıları / WOS [1518]
  • Biyoinformatik ve Genetik / Bioinformatics and Genetics [220]

Keywords

2-Pyrazoline
MAO-A/MAO-B inhibition
Docking
Antidepressant-anxiogenic activities
Crystallographic model

Share


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access TypesThis CollectionBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access Types

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV