Show simple item record

dc.contributor.authorTürkmenoğlu, Fatma Pınar
dc.contributor.authorBaysal, Ipek
dc.contributor.authorÇiftçi-Yabanoğlu, Samiye
dc.contributor.authorYelekçi, Kemal
dc.contributor.authorTemel, Hamdi
dc.contributor.authorPaşa, Salih
dc.contributor.authorEzer, Nurten
dc.contributor.authorÇalış, Ihsan
dc.contributor.authorUçar, Gülberk
dc.date.accessioned2019-06-27T08:02:20Z
dc.date.available2019-06-27T08:02:20Z
dc.date.issued2015
dc.identifier.issn1420-3049
dc.identifier.urihttps://hdl.handle.net/20.500.12469/598
dc.identifier.urihttps://dx.doi.org/DOI: 10.3390/molecules20057454
dc.description.abstractThe inhibitory effects of flavonoids on monoamine oxidases (MAOs) have attracted great interest since alterations in monoaminergic transmission are reported to be related to neurodegenerative diseases such as Parkinson's and Alzheimer's diseases and psychiatric disorders such as depression and anxiety thus MAOs may be considered as targets for the treatment of these multi-factorial diseases. In the present study four Sideritis flavonoids xanthomicrol (1) isoscutellarein 7-O-[6'''-O-acetyl--d-allopyranosyl-(12)]--d-glucopyranoside (2) isoscutellarein 7-O-[6'''-O-acetyl--d-allopyranosyl-(12)]-6''-O-acetyl--d-glucopyranoside (3) and salvigenin (4) were docked computationally into the active site of the human monoamine oxidase isoforms (hMAO-A and hMAO-B) and were also investigated for their hMAO inhibitory potencies using recombinant hMAO isoenzymes. The flavonoids inhibited hMAO-A selectively and reversibly in a competitive mode. Salvigenin (4) was found to be the most potent hMAO-A inhibitor while xanthomicrol (1) appeared as the most selective hMAO-A inhibitor. The computationally obtained results were in good agreement with the corresponding experimental values. In addition the x-ray structure of xanthomicrol (1) has been shown. The current work warrants further preclinical studies to assess the potential of xanthomicrol (1) and salvigenin (4) as new selective and reversible hMAO-A inhibitors for the treatment of depression and anxiety.
dc.language.isoEnglish
dc.publisherMDPI
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSideritis
dc.subjectFlavonoid
dc.subjectXanthomicrol
dc.subjectSalvigenin
dc.subjectMonoamine oxidase
dc.subjectInhibition
dc.subjectMolecular docking
dc.subjectX-ray diffraction investigation
dc.titleFlavonoids from Sideritis Species: Human Monoamine Oxidase (hMAO) Inhibitory Activities Molecular Docking Studies and Crystal Structure of Xanthomicrol
dc.typeArticle
dc.identifier.startpage7454
dc.identifier.endpage7473
dc.relation.journalMolecules
dc.identifier.issue5
dc.identifier.volume20
dc.identifier.wosWOS:000357157600002
dc.identifier.doi10.3390/molecules20057454
dc.contributor.khasauthorYelekçi, Kemal


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record