Eroğlu, Deniz

Loading...
Profile Picture
Name Variants
Deniz, Eroglu
Eroglu,D.
Eroğlu, DENIZ
DENIZ EROĞLU
Eroglu, Deniz
Eroglu D.
EROĞLU, DENIZ
Eroğlu,D.
Deniz EROĞLU
Eroğlu, D.
Eroğlu, Deniz
Deniz Eroğlu
E., Deniz
EROĞLU, Deniz
E.,Deniz
D. Eroğlu
Eroglu,Deniz
Eroğlu, Deniz
Job Title
Dr. Öğr. Üyesi
Email Address
deniz.eroglu@khas.edu.tr
Main Affiliation
Molecular Biology and Genetics
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

20

Articles

17

Citation Count

105

Supervised Theses

3

Scholarly Output Search Results

Now showing 1 - 10 of 20
  • Article
    Citation - WoS: 4
    Citation - Scopus: 7
    Collective dynamics of random Janus oscillator networks
    (AMER PHYSICAL SOC, 2020) Eroğlu, Deniz; Eroğlu, Deniz; Rodrigues, Francisco A.; Moreno, Yamir
    Janus oscillators have been recently introduced as a remarkably simple phase oscillator model that exhibits nontrivial dynamical patterns-such as chimeras, explosive transitions, and asymmetry-induced synchronization-that were once observed only in specifically tailored models. Here we study ensembles of Janus oscillators coupled on large homogeneous and heterogeneous networks. By virtue of the Ott-Antonsen reduction scheme, we find that the rich dynamics of Janus oscillators persists in the thermodynamic limit of random regular, Erdos-Renyi, and scale-free random networks. We uncover for all these networks the coexistence between partially synchronized states and a multitude of solutions of a collective state we denominate as a breathing standing wave, which displays global oscillations. Furthermore, abrupt transitions of the global and local order parameters are observed for all topologies considered. Interestingly, only for scale-free networks, it is found that states displaying global oscillations vanish in the thermodynamic limit.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Sampling Rate-Corrected Analysis of Irregularly Sampled Time Series
    (Amer Physical Soc, 2022) Braun, Tobias; Eroğlu, Deniz; Fernandez, Cinthya N.; Eroglu, Deniz; Hartland, Adam; Breitenbach, Sebastian F. M.; Marwan, Norbert
    The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one segment into the other. We show that transformation costs generally exhibit a nontrivial relationship with local sampling rate. If the sampling resolution undergoes strong variations, this effect impedes unbiased comparison between different time episodes. We study the impact of this effect on recurrence quantification analysis, a framework that is well suited for identifying regime shifts in nonlinear time series. A constrained randomization approach is put forward to correct for the biased recurrence quantification measures. This strategy involves the generation of a type of time series and time axis surrogates which we call sampling-rate-constrained (SRC) surrogates. We demonstrate the effectiveness of the proposed approach with a synthetic example and an irregularly sampled speleothem proxy record from Niue island in the central tropical Pacific. Application of the proposed correction scheme identifies a spurious transition that is solely imposed by an abrupt shift in sampling rate and uncovers periods of reduced seasonal rainfall predictability associated with enhanced El Nino-Southern Oscillation and tropical cyclone activity.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    First-Principle Validation of Fourier's Law in D=1, 2, 3 Classical Systems
    (Elsevier, 2023) Tsallis, Constantino; Eroğlu, Deniz; Lima, Henrique Santos; Tirnakli, Ugur; Eroglu, Deniz
    We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V.
  • Article
    Citation - Scopus: 7
    Collective Dynamics of Random Janus Oscillator Networks
    (American Physical Society, 2020) Peron,T.; Eroğlu, Deniz; Eroglu,D.; Rodrigues,F.A.; Moreno,Y.
    Janus oscillators have been recently introduced as a remarkably simple phase oscillator model that exhibits nontrivial dynamical patterns-such as chimeras, explosive transitions, and asymmetry-induced synchronization-that were once observed only in specifically tailored models. Here we study ensembles of Janus oscillators coupled on large homogeneous and heterogeneous networks. By virtue of the Ott-Antonsen reduction scheme, we find that the rich dynamics of Janus oscillators persists in the thermodynamic limit of random regular, Erdos-Rényi, and scale-free random networks. We uncover for all these networks the coexistence between partially synchronized states and a multitude of solutions of a collective state we denominate as a breathing standing wave, which displays global oscillations. Furthermore, abrupt transitions of the global and local order parameters are observed for all topologies considered. Interestingly, only for scale-free networks, it is found that states displaying global oscillations vanish in the thermodynamic limit. © 2020 authors. Published by the American Physical Society.
  • Article
    Citation - WoS: 20
    Citation - Scopus: 22
    Network Structural Origin of Instabilities in Large Complex Systems
    (Amer Assoc Advancement Science, 2022) Duan, Chao; Eroğlu, Deniz; Nishikawa, Takashi; Eroglu, Deniz; Motter, Adilson E.
    A central issue in the study of large complex network systems, such as power grids, financial networks, and ecological systems, is to understand their response to dynamical perturbations. Recent studies recognize that many real networks show nonnormality and that nonnormality can give rise to reactivity-the capacity of a linearly stable system to amplify its response to perturbations, oftentimes exciting nonlinear instabilities. Here, we identify network structural properties underlying the pervasiveness of nonnormality and reactivity in real directed networks, which we establish using the most extensive dataset of such networks studied in this context to date. The identified properties are imbalances between incoming and outgoing network links and paths at each node. On the basis of this characterization, we develop a theory that quantitatively predicts nonnormality and reactivity and explains the observed pervasiveness. We suggest that these results can be used to design, upgrade, control, and manage networks to avoid or promote network instabilities.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 19
    Revealing Dynamics, Communities, and Criticality From Data
    (Amer Physical Soc, 2020) Eroğlu, Deniz; Eroğlu, Deniz; Tanzi, Matteo; van Strien, Sebastian; Pereira, Tiago
    Complex systems such as ecological communities and neuron networks are essential parts of our everyday lives. These systems are composed of units which interact through intricate networks. The ability to predict sudden changes in the dynamics of these networks, known as critical transitions, from data is important to avert disastrous consequences of major disruptions. Predicting such changes is a major challenge as it requires forecasting the behavior for parameter ranges for which no data on the system are available. We address this issue for networks with weak individual interactions and chaotic local dynamics. We do this by building a model network, termed an effective network, consisting of the underlying local dynamics and a statistical description of their interactions. We show that behavior of such networks can be decomposed in terms of an emergent deterministic component and a fluctuation term. Traditionally, such fluctuations are filtered out. However, as we show, they are key to accessing the interaction structure. We illustrate this approach on synthetic time series of realistic neuronal interaction networks of the cat cerebral cortex and on experimental multivariate data of optoelectronic oscillators. We reconstruct the community structure by analyzing the stochastic fluctuations generated by the network and predict critical transitions for coupling parameters outside the observed range.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 13
    Holocene Climate Forcings and Lacustrine Regime Shifts in the Indian Summer Monsoon Realm
    (Wıley, 2020) Prasad, Sushma; Eroğlu, Deniz; Marwan, Norbert; Eroğlu, Deniz; Goswami, Bedartha; Mishra, Praveen Kuma; Gaye, Birgit; Anoop, Akhil; Stebich, Martina; Jehangir, Arshid; Basavaiah, Nathani
    Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Nino Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions - Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was 'less sensitive' to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. (c) 2020 John Wiley & Sons, Ltd.
  • Master Thesis
    Generalized Synchronization: Master-Slave Relationship in Three Coupled Systems
    (Kadir Has Üniversitesi, 2022) Doğan, Gizem; Eroğlu, Deniz; Eroglu, Deniz
    Synchronization is an important phenomenon for complex, biological, and physical systems such as the brain, i.e., Parkinson’s disease, heart beating, hand-clapping, power grids, lasers, and many others. Intuitively, we can express synchronization as strong correlations between coupled systems. We can state two scenarios in this manner. One is synchronization between identical systems, which is called complete synchronization; the other is the synchronization between the non-identical systems, called generalized synchronization. In this thesis, initially, we considered the two coupled systems and calculated the critical coupling value for the generalized synchronization analytically. More precisely, the Lorenz system drives two R¨ossler systems. We investigated the critical coupling value for synchronization numerically. However, real-world examples are much more complex. The most straightforward case was the two coupled systems for the generalized synchronization, and next, we focus on three coupled systems. In particular, suppose that we have three coupled one Lorenz and two R¨ossler systems. In our example, the Lorenz system drives the first R¨ossler system, and first R¨ossler system drives the second R¨ossler system, and finally, the second R¨ossler system also drives the Lorenz system. We calculated the critical coupling of the whole system for generalized synchronization and analyzed the time series for each system.
  • Doctoral Thesis
    Network Reconstruction From Data
    (Kadir Has Üniversitesi, 2023) Kement, İrem Topal; Eroğlu, Deniz; Eroğlu, Deniz
    Güç şebekeleri, ekosistem, iklim, nöron ağları ve bir hastalığın küresel ölçekte yayılması gibi hayatımızın temel bileşenlerinin bir ortak noktası vardır: karmaşık ağlar üzerinde etkileşen dinamik birimler olarak modellenebilmeleri. Pek çok örnekte, karmaşık sistemlerden elde edilen veriler doğal bir ağ yapısını temsil eder veya sistem özünde ağ yapısında olmasa bile bir ağ gibi modellenebilir. Ağ dinamiğini bilmek, bu karmaşık sistemlerden istenen işlevselliği elde etmek, dolayısıyla gelecekteki durumunu tahmin etmek ve kontrol etmek için çok önemlidir. Örneğin beynimizdeki nöron ağlarının etkileşimindeki normal olmayan değişiklikler patolojik durumlara yol açabileceğinden, bu ağlar insan sağlığı için önemli bir dinamik ağ sınıfını oluştururlar. Epilepsi krizleri nöron ağlarının etkileşimlerinin değişmesi ile beliren ağ senkronizasyonu ile ilişkilidir. Bu tip istenmeyen nöronal senkronizasyona kritik geçişleri önceden tahmin etmek ve erken uyarı sinyallerini tespit edecek teknolojileri icat etmek hayati önem taşır. Nöronların iç dinamikleri ve aralarındaki bağlantı şemasından oluşan nöron ağlarında, senkronizasyona kritik geçiş doğrudan belirlenemez. Bu nedenle amaç, parametre değişikliklerinden kaynaklanan kritik geçişleri tahmin etmek için ağ dinamiğinin denklemini her bir düğümden elde edilen ölçüm verisinden öğrenmektir. Bu doktora çalışması, dinamik sistemler teorisinden ortalama alan yaklaşımlarını istatistiksel öğrenme araçlarıyla birleştirerek zaman serisi gözlemlerinden dinamik bir ağı yeniden yapılandırma yaklaşımı sunar. Önerilen veri güdümlü yeniden yapılandırma yaklaşımı iki temel varsayımda bulunur: sinirbilimsel bir model ve tüm düğümlerin verisine tam erişim. Buna karşılık, düğümlerin iç dinamikleri, aralarındaki bağlantı yapısı ve etkileşim şekli bilinmez. Sinirbilimsel koşullar, nöronların iç dinamiğinin kaotik davranış göstermesi, zayıf bir etkileşimde olmaları ve ölçekten bağımsız bir ağ ile temsil edilmeleri olarak sıralanır. Metodolojimiz tüm bilinmeyenleri nispeten kısa zaman serileri kullanarak doğru bir şekilde öğrenir ve ağ boyutundan bağımsızdır. Kısa süreli ölçüm ve büyük ağlarda başarı gerçek dünya örneklerine yaklaşabilmemiz için önemli iki kısıt olarak ele alınmıştır. Sonuç olarak, veriden öğrenilmiş ağ modeli tüm parametreleri kontrol edebilmemize ve karmaşık ağın kolektif davranışını tahmin edebilmemize izin verir.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 12
    Emergent hypernetworks in weakly coupled oscillators
    (Nature Portfolio, 2022) Eroğlu, Deniz; Ocampo-Espindola, Jorge Luis; Eroglu, Deniz; Kiss, Istvan Z.; Pereira, Tiago
    Networks of weakly coupled oscillators had a profound impact on our understanding of complex systems. Studies on model reconstruction from data have shown prevalent contributions from hypernetworks with triplet and higher interactions among oscillators, in spite that such models were originally defined as oscillator networks with pairwise interactions. Here, we show that hypernetworks can spontaneously emerge even in the presence of pairwise albeit nonlinear coupling given certain triplet frequency resonance conditions. The results are demonstrated in experiments with electrochemical oscillators and in simulations with integrate-and-fire neurons. By developing a comprehensive theory, we uncover the mechanism for emergent hypernetworks by identifying appearing and forbidden frequency resonant conditions. Furthermore, it is shown that microscopic linear (difference) coupling among units results in coupled mean fields, which have sufficient nonlinearity to facilitate hypernetworks. Our findings shed light on the apparent abundance of hypernetworks and provide a constructive way to predict and engineer their emergence.