First-principle validation of Fourier's law in d=1, 2, 3 classical systems

Loading...
Thumbnail Image

Date

2023

Authors

Lima, Henrique Santos
Tirnakli, Ugur
Eroglu, Deniz

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V.

Description

Keywords

Nonextensive statistical mechanics, Conduction, Langevin dynamics, Linear transport phenomena, Conduction, Irreversibility

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Q1

Scopus Q

Q1

Source

Physica D-Nonlinear Phenomena

Volume

446

Issue

Start Page

End Page