Bayesian estimation of discrete-time cellular neural network coefficients

dc.contributor.authorŞenol, Habib
dc.contributor.authorÖzmen, Atilla
dc.contributor.authorŞenol, Habib
dc.date.accessioned2019-06-27T08:01:32Z
dc.date.available2019-06-27T08:01:32Z
dc.date.issued2017
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractA new method for finding the network coefficients of a discrete-time cellular neural network (DTCNN) is proposed. This new method uses a probabilistic approach that itself uses Bayesian learning to estimate the network coefficients. A posterior probability density function (PDF) is composed using the likelihood and prior PDFs derived from the system model and prior information respectively. This posterior PDF is used to draw samples with the help of the Metropolis algorithm a special case of the Metropolis--Hastings algorithm where the proposal distribution function is symmetric and resulting samples are then averaged to find the minimum mean square error (MMSE) estimate of the network coefficients. A couple of image processing applications are performed using these estimated parameters and the results are compared with those of some well-known methods.en_US]
dc.identifier.citation1
dc.identifier.doi10.3906/elk-1510-87en_US
dc.identifier.endpage2374
dc.identifier.issn1300-0632en_US
dc.identifier.issn1303-6203en_US
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85020735615en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage2363en_US
dc.identifier.trdizinid247754en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/397
dc.identifier.urihttps://doi.org/10.3906/elk-1510-87
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/247754
dc.identifier.volume25en_US
dc.identifier.wosWOS:000404385700059en_US
dc.identifier.wosqualityQ4
dc.institutionauthorŞenol, Habiben_US
dc.language.isoenen_US
dc.publisherTUBITAK Scientific & Technical Research Council Turkeyen_US
dc.relation.journalTurkish Journal of Electrical Engineering & Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBayesian learningen_US
dc.subjectCellular neural networksen_US
dc.subjectMetropolis Hastingsen_US
dc.subjectEstimationen_US
dc.titleBayesian estimation of discrete-time cellular neural network coefficientsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isAuthorOfPublicationcf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery2c09cda4-9d83-4836-8695-b36fc6c9c4ec

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bayesian estimation of discrete-time cellular neural network coefficients.pdf
Size:
921.06 KB
Format:
Adobe Portable Document Format
Description: