Bayesian Estimation of Discrete-Time Cellular Neural Network Coefficients
| dc.contributor.author | Özer, Hakan Metin | |
| dc.contributor.author | Özmen, Atilla | |
| dc.contributor.author | Şenol, Habib | |
| dc.date.accessioned | 2019-06-27T08:01:32Z | |
| dc.date.available | 2019-06-27T08:01:32Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | A new method for finding the network coefficients of a discrete-time cellular neural network (DTCNN) is proposed. This new method uses a probabilistic approach that itself uses Bayesian learning to estimate the network coefficients. A posterior probability density function (PDF) is composed using the likelihood and prior PDFs derived from the system model and prior information respectively. This posterior PDF is used to draw samples with the help of the Metropolis algorithm a special case of the Metropolis--Hastings algorithm where the proposal distribution function is symmetric and resulting samples are then averaged to find the minimum mean square error (MMSE) estimate of the network coefficients. A couple of image processing applications are performed using these estimated parameters and the results are compared with those of some well-known methods. | en_US] |
| dc.identifier.doi | 10.3906/elk-1510-87 | en_US |
| dc.identifier.issn | 1300-0632 | en_US |
| dc.identifier.issn | 1303-6203 | en_US |
| dc.identifier.issn | 1300-0632 | |
| dc.identifier.issn | 1303-6203 | |
| dc.identifier.scopus | 2-s2.0-85020735615 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/397 | |
| dc.identifier.uri | https://doi.org/10.3906/elk-1510-87 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/247754 | |
| dc.language.iso | en | en_US |
| dc.publisher | TUBITAK Scientific & Technical Research Council Turkey | en_US |
| dc.relation.ispartof | TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Bayesian learning | en_US |
| dc.subject | Cellular neural networks | en_US |
| dc.subject | Metropolis Hastings | en_US |
| dc.subject | Estimation | en_US |
| dc.title | Bayesian Estimation of Discrete-Time Cellular Neural Network Coefficients | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Şenol, Habib | en_US |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 2374 | |
| gdc.description.issue | 3 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 2363 | en_US |
| gdc.description.volume | 25 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2620949574 | |
| gdc.identifier.trdizinid | 247754 | en_US |
| gdc.identifier.wos | WOS:000404385700059 | en_US |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Bayesian learning | |
| gdc.oaire.keywords | Metropolis Hastings | |
| gdc.oaire.keywords | Cellular neural networks | |
| gdc.oaire.keywords | Estimation | |
| gdc.oaire.keywords | Metropolis–Hastings | |
| gdc.oaire.popularity | 9.150732E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.07 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.relation.journal | Turkish Journal of Electrical Engineering & Computer Sciences | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Şenol, Habib | |
| gdc.virtual.author | Özmen, Atilla | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | 2c09cda4-9d83-4836-8695-b36fc6c9c4ec | |
| relation.isAuthorOfPublication | cf8f9e05-3f89-4ab6-af78-d0937210fb77 | |
| relation.isAuthorOfPublication.latestForDiscovery | 2c09cda4-9d83-4836-8695-b36fc6c9c4ec | |
| relation.isOrgUnitOfPublication | fd8e65fe-c3b3-4435-9682-6cccb638779c | |
| relation.isOrgUnitOfPublication | 12b0068e-33e6-48db-b92a-a213070c3a8d | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | fd8e65fe-c3b3-4435-9682-6cccb638779c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bayesian estimation of discrete-time cellular neural network coefficients.pdf
- Size:
- 921.06 KB
- Format:
- Adobe Portable Document Format
- Description:
