The Critical Point of a Sigmoidal Curve

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Özdemir, Yunus
dc.contributor.other Industrial Engineering
dc.date.accessioned 2020-06-08T19:37:57Z
dc.date.available 2020-06-08T19:37:57Z
dc.date.issued 2020
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.abstract Let y(t) be a monotone increasing curve with lim(t ->+/-infinity) y((n))(t) = 0 for all n and let t(n) be the location of the global extremum of the nth derivative y((n))(t). Under certain assumptions on the Fourier and Hilbert transforms of y(t), we prove that the sequence {t(n)} is convergent. This implies in particular a preferred choice of the origin of the time axis and an intrinsic definition of the even and odd components of a sigmoidal function. In the context of phase transitions, the limit point has the interpretation of the critical point of the transition as discussed in previous work [3]. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.24193/subbmath.2020.1.07 en_US
dc.identifier.endpage 91 en_US
dc.identifier.issn 0252-1938 en_US
dc.identifier.issn 2065-961X en_US
dc.identifier.issn 0252-1938
dc.identifier.issn 2065-961X
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85084254946 en_US
dc.identifier.scopusquality Q3
dc.identifier.startpage 77 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2894
dc.identifier.uri https://doi.org/10.24193/subbmath.2020.1.07
dc.identifier.volume 65 en_US
dc.identifier.wos WOS:000519568800007 en_US
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.language.iso en en_US
dc.publisher Babeș-Bolyai University en_US
dc.relation.journal Arama Sonuçları Web sonuçları Studia Universitatis Babeș-Bolyai Mathematica en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Sigmoidal curve en_US
dc.subject Critical point en_US
dc.subject Fourier transform en_US
dc.subject Hilbert transform en_US
dc.title The Critical Point of a Sigmoidal Curve en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The critical point of a sigmoidal curve.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: