The Critical Point of a Sigmoidal Curve
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Özdemir, Yunus | |
dc.date.accessioned | 2020-06-08T19:37:57Z | |
dc.date.available | 2020-06-08T19:37:57Z | |
dc.date.issued | 2020 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | Let y(t) be a monotone increasing curve with lim(t ->+/-infinity) y((n))(t) = 0 for all n and let t(n) be the location of the global extremum of the nth derivative y((n))(t). Under certain assumptions on the Fourier and Hilbert transforms of y(t), we prove that the sequence {t(n)} is convergent. This implies in particular a preferred choice of the origin of the time axis and an intrinsic definition of the even and odd components of a sigmoidal function. In the context of phase transitions, the limit point has the interpretation of the critical point of the transition as discussed in previous work [3]. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.24193/subbmath.2020.1.07 | en_US |
dc.identifier.endpage | 91 | en_US |
dc.identifier.issn | 0252-1938 | en_US |
dc.identifier.issn | 2065-961X | en_US |
dc.identifier.issn | 0252-1938 | |
dc.identifier.issn | 2065-961X | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85084254946 | en_US |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 77 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/2894 | |
dc.identifier.uri | https://doi.org/10.24193/subbmath.2020.1.07 | |
dc.identifier.volume | 65 | en_US |
dc.identifier.wos | WOS:000519568800007 | en_US |
dc.institutionauthor | Bilge, Ayşe Hümeyra | en_US |
dc.institutionauthor | Bilge, Ayşe Hümeyra | |
dc.language.iso | en | en_US |
dc.publisher | Babeș-Bolyai University | en_US |
dc.relation.journal | Arama Sonuçları Web sonuçları Studia Universitatis Babeș-Bolyai Mathematica | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Sigmoidal curve | en_US |
dc.subject | Critical point | en_US |
dc.subject | Fourier transform | en_US |
dc.subject | Hilbert transform | en_US |
dc.title | The Critical Point of a Sigmoidal Curve | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- The critical point of a sigmoidal curve.pdf
- Size:
- 1.91 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: