From Text To Multimodal: a Survey of Adversarial Example Generation in Question Answering Systems

dc.authorid Yigit, Gulsum/0000-0001-7010-169X
dc.authorscopusid 57215312808
dc.authorscopusid 55664402200
dc.authorwosid Yiğit, Gülsüm/IVU-8380-2023
dc.authorwosid Amasyali, Fatih/AAZ-4791-2020
dc.contributor.author Yigit, Gulsum
dc.contributor.author Yiğit, Gülsüm
dc.contributor.author Amasyali, Mehmet Fatih
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-10-15T19:40:10Z
dc.date.available 2024-10-15T19:40:10Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Yigit, Gulsum; Amasyali, Mehmet Fatih] Yildiz Tech Univ, Dept Comp Engn, Istanbul, Turkiye; [Yigit, Gulsum] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye en_US
dc.description Yigit, Gulsum/0000-0001-7010-169X en_US
dc.description.abstract Integrating adversarial machine learning with question answering (QA) systems has emerged as a critical area for understanding the vulnerabilities and robustness of these systems. This article aims to review adversarial example-generation techniques in the QA field, including textual and multimodal contexts. We examine the techniques employed through systematic categorization, providing a structured review. Beginning with an overview of traditional QA models, we traverse the adversarial example generation by exploring rule-based perturbations and advanced generative models. We then extend our research to include multimodal QA systems, analyze them across various methods, and examine generative models, seq2seq architectures, and hybrid methodologies. Our research grows to different defense strategies, adversarial datasets, and evaluation metrics and illustrates the literature on adversarial QA. Finally, the paper considers the future landscape of adversarial question generation, highlighting potential research directions that can advance textual and multimodal QA systems in the context of adversarial challenges. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye(TUB ITAK) en_US
dc.description.sponsorship Open access funding provided by the Scientific and Technological Research Council of Turkiye(TUB ITAK). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s10115-024-02199-z
dc.identifier.issn 0219-1377
dc.identifier.issn 0219-3116
dc.identifier.scopus 2-s2.0-85200991474
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s10115-024-02199-z
dc.identifier.uri https://hdl.handle.net/20.500.12469/6352
dc.identifier.wos WOS:001288070100003
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Diğer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Question answering en_US
dc.subject Adversarial question generation en_US
dc.subject Visual question generation en_US
dc.subject Adversarial datasets en_US
dc.subject Adversarial evaluation metrics en_US
dc.title From Text To Multimodal: a Survey of Adversarial Example Generation in Question Answering Systems en_US
dc.type Review en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files