First-principle validation of Fourier's law in d=1, 2, 3 classical systems
dc.authorid | TIRNAKLI, Ugur/0000-0002-1104-0847 | |
dc.authorid | Santos Lima, Henrique/0000-0002-3833-0190 | |
dc.authorwosid | TIRNAKLI, Ugur/K-6866-2012 | |
dc.contributor.author | Eroğlu, Deniz | |
dc.contributor.author | Lima, Henrique Santos | |
dc.contributor.author | Tirnakli, Ugur | |
dc.contributor.author | Eroglu, Deniz | |
dc.date.accessioned | 2023-10-19T15:11:40Z | |
dc.date.available | 2023-10-19T15:11:40Z | |
dc.date.issued | 2023 | |
dc.department-temp | [Tsallis, Constantino; Lima, Henrique Santos] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio de Janeiro, Brazil; [Tsallis, Constantino; Lima, Henrique Santos] Natl Inst Sci & Technol Complex Syst, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil; [Tsallis, Constantino] St Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA; [Tsallis, Constantino] Complex Sci Hub Vienna, Josefstadter Str 39, A-1080 Vienna, Austria; [Tirnakli, Ugur] Izmir Univ Econ, Fac Arts & Sci, Dept Phys, TR-35330 Izmir, Turkiye; [Eroglu, Deniz] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkiye | en_US |
dc.description.abstract | We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V. | en_US |
dc.description.sponsorship | CNPq (Brazilian agency); Faperj (Brazilian agency); BAGEP Award of the Science Academy, Turkey | en_US |
dc.description.sponsorship | We acknowledge fruitful remarks by G. Benedek, E.P. Borges and S. Miret Artes, as well as partial financial support from CNPq and Faperj (Brazilian agencies) . The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) . U.T. is a member of the Science Academy, Bilim Akademisi, Turkey. D.E. was supported by the BAGEP Award of the Science Academy, Turkey. | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.1016/j.physd.2023.133681 | en_US |
dc.identifier.issn | 0167-2789 | |
dc.identifier.issn | 1872-8022 | |
dc.identifier.scopus | 2-s2.0-85147730951 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.physd.2023.133681 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5159 | |
dc.identifier.volume | 446 | en_US |
dc.identifier.wos | WOS:000995633300001 | en_US |
dc.identifier.wosquality | Q1 | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Physica D-Nonlinear Phenomena | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonextensive statistical mechanics | en_US |
dc.subject | Conduction | En_Us |
dc.subject | Langevin dynamics | en_US |
dc.subject | Linear transport phenomena | en_US |
dc.subject | Conduction | |
dc.subject | Irreversibility | en_US |
dc.title | First-principle validation of Fourier's law in d=1, 2, 3 classical systems | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bae555f-a8aa-4b95-bcfe-54cc47812e13 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bae555f-a8aa-4b95-bcfe-54cc47812e13 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 5159.pdf
- Size:
- 521.03 KB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text