Early Steps in Automated Behavior Mapping via Indoor Sensors
| gdc.relation.journal | Sensors | en_US |
| dc.contributor.author | Arsan, Taner | |
| dc.contributor.author | Kepez, Orçun | |
| dc.contributor.other | Interior Architecture and Environmental Design | |
| dc.contributor.other | Computer Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 06. Faculty of Art and Design | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:01:14Z | |
| dc.date.available | 2019-06-27T08:01:14Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Behavior mapping (BM) is a spatial data collection technique in which the locational and behavioral information of a user is noted on a plan layout of the studied environment. Among many indoor positioning technologies we chose Wi-Fi BLE beacon and ultra-wide band (UWB) sensor technologies for their popularity and investigated their applicability in BM. We tested three technologies for error ranges and found an average error of 1.39 m for Wi-Fi in a 36 m(2) test area (6m x 6 m) 0.86 m for the BLE beacon in a 37.44 m(2) test area (9.6 m x 3.9 m) and 0.24 m for ultra-wide band sensors in a 36 m(2) test area (6 m x 6 m). We simulated the applicability of these error ranges for real-time locations by using a behavioral dataset collected from an active learning classroom. We used two UWB tags simultaneously by incorporating a custom-designed ceiling system in a new 39.76 m(2) test area (7.35 m x 5.41 m). We considered 26 observation points and collected data for 180 s for each point (total 4680) with an average error of 0.2072 m for 23 points inside the test area. Finally we demonstrated the use of ultra-wide band sensor technology for BM. | en_US] |
| dc.identifier.citationcount | 9 | |
| dc.identifier.doi | 10.3390/s17122925 | en_US |
| dc.identifier.issn | 1424-8220 | en_US |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.scopus | 2-s2.0-85040359009 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/312 | |
| dc.identifier.uri | https://doi.org/10.3390/s17122925 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Sensors | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Sensors and technologies for indoor localization systems | en_US |
| dc.subject | Positioning strategies and algorithms | en_US |
| dc.subject | Behavior mapping | en_US |
| dc.subject | Activity monitoring | en_US |
| dc.subject | Ultra-wide band sensors | en_US |
| dc.title | Early Steps in Automated Behavior Mapping via Indoor Sensors | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Arsan, Taner | en_US |
| gdc.author.institutional | Arsan, Taner | |
| gdc.author.institutional | Kepez, Orçun | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.department | Fakülteler, Sanat ve Tasarım Fakültesi, İç Mimarlık ve Çevre Tasarımı Bölümü | en_US |
| gdc.description.issue | 12 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 2925 | |
| gdc.description.volume | 17 | en_US |
| gdc.identifier.openalex | W2777928628 | |
| gdc.identifier.pmid | 29258178 | en_US |
| gdc.identifier.wos | WOS:000423285800224 | en_US |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 3.0986107E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | activity monitoring | |
| gdc.oaire.keywords | Behavior | |
| gdc.oaire.keywords | ultra-wide band sensors | |
| gdc.oaire.keywords | Positioning strategies and algorithms | |
| gdc.oaire.keywords | Chemical technology | |
| gdc.oaire.keywords | TP1-1185 | |
| gdc.oaire.keywords | Sensors and technologies for indoor localization systems | |
| gdc.oaire.keywords | Article | |
| gdc.oaire.keywords | positioning strategies and algorithms | |
| gdc.oaire.keywords | Ultra-wide band sensors | |
| gdc.oaire.keywords | Automation | |
| gdc.oaire.keywords | sensors and technologies for indoor localization systems; positioning strategies and algorithms; behavior mapping; activity monitoring; ultra-wide band sensors | |
| gdc.oaire.keywords | Activity monitoring | |
| gdc.oaire.keywords | sensors and technologies for indoor localization systems | |
| gdc.oaire.keywords | behavior mapping | |
| gdc.oaire.keywords | Behavior mapping | |
| gdc.oaire.popularity | 8.775519E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.fwci | 0.319 | |
| gdc.openalex.normalizedpercentile | 0.78 | |
| gdc.opencitations.count | 7 | |
| gdc.plumx.crossrefcites | 9 | |
| gdc.plumx.facebookshareslikecount | 47 | |
| gdc.plumx.mendeley | 43 | |
| gdc.plumx.pubmedcites | 2 | |
| gdc.plumx.scopuscites | 10 | |
| gdc.scopus.citedcount | 10 | |
| gdc.wos.citedcount | 11 | |
| relation.isAuthorOfPublication | 7959ea6c-1b30-4fa0-9c40-6311259c0914 | |
| relation.isAuthorOfPublication | 0815099a-9281-471b-b5c2-832d10ad983d | |
| relation.isAuthorOfPublication.latestForDiscovery | 7959ea6c-1b30-4fa0-9c40-6311259c0914 | |
| relation.isOrgUnitOfPublication | 0a9f6edd-770d-4882-af28-4100f62c19f0 | |
| relation.isOrgUnitOfPublication | fd8e65fe-c3b3-4435-9682-6cccb638779c | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | 8fe856d9-ed4d-45d5-8d18-d900eb9c3bff | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0a9f6edd-770d-4882-af28-4100f62c19f0 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Early Steps in Automated Behavior Mapping via Indoor Sensors.pdf
- Size:
- 4.4 MB
- Format:
- Adobe Portable Document Format
- Description: