Development of a Supervised Classification Method To Construct 2d Mineral Maps on Backscattered Electron Images

dc.contributor.author Camalan, Mahmut
dc.contributor.author Çavur, Mahmut
dc.contributor.author Çavur, Mahmut
dc.contributor.other Management Information Systems
dc.date.accessioned 2020-06-08T19:07:18Z
dc.date.available 2020-06-08T19:07:18Z
dc.date.issued 2020
dc.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
dc.description.abstract The Mineral Liberation Analyzer (MLA) can be used to obtain mineral maps from backscattered electron (BSE) images of particles. This paper proposes an alternative methodology that includes random forest classification, a prospective machine learning algorithm, to develop mineral maps from BSE images. The results show that the overall accuracy and kappa statistic of the proposed method are 97% and 0.94, respectively, proving that random forest classification is accurate. The accuracy indicators also suggest that the proposed method may be applied to classify minerals with similar appearances under BSE imaging. Meanwhile, random forest predicts fewer middling particles with binary and ternary composition, but the MLA predicts more middling particles only with ternary composition. These discrepancies may arise because the MLA, unlike random forest, may also measure the elemental compositions of mineral surfaces below the polished section. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.3906/elk-1906-60 en_US
dc.identifier.endpage 1043 en_US
dc.identifier.issn 1300-0632 en_US
dc.identifier.issn 1303-6203 en_US
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85085014985 en_US
dc.identifier.scopusquality Q3
dc.identifier.startpage 1030 en_US
dc.identifier.trdizinid 335120 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2891
dc.identifier.uri https://doi.org/10.3906/elk-1906-60
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/335120
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000522447800030 en_US
dc.identifier.wosquality Q4
dc.institutionauthor Çavur, Mahmut en_US
dc.language.iso en en_US
dc.publisher Tubitak en_US
dc.relation.journal Turkish Journal of Electrical Engineering & Computer Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Random forest en_US
dc.subject Mineral Liberation Analyzer en_US
dc.subject Backscattered electron images en_US
dc.subject Mineral map en_US
dc.subject Confusion matrix en_US
dc.title Development of a Supervised Classification Method To Construct 2d Mineral Maps on Backscattered Electron Images en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isAuthorOfPublication.latestForDiscovery 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Development of a supervised classification method to construct 2D mineral maps on backscattered electron images.pdf
Size:
5.45 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: