Resource-Efficient Ensemble Learning for Edge Iiot Network Security Against Osint-Based Attacks

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The rise of Edge IIoT networks has transformed industries by enabling real-time data processing, but these networks face significant c ybersecurity risks, particularly from OSINT-based attacks. This paper presents a resource-efficient ensemble learning framework designed to detect such attacks in Edge IIoT environments. The framework integrates machine learning models, including RandomForest, K-Nearest Neighbors, and Logistic Regression, optimized with Principal Component Analysis (PCA) to reduce data dimensionality and computational overhead. GridSearchCV and StratifiedKFold cross-validation were employed to fine-tune the models, resulting in high detection accuracy. This approach ensures robust and efficient security for resource-constrained Edge IIoT networks. © 2024 IEEE.

Description

Keywords

Cyber Security, Edge Iiot, Ensemble Learning, Resource-Efficient Machine Learning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906

Volume

Issue

Start Page

778

End Page

783
PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo