Resource-Efficient Ensemble Learning for Edge Iiot Network Security Against Osint-Based Attacks

dc.contributor.author Ecevit, M.I.
dc.contributor.author Çukur, Z.
dc.contributor.author Izgün, M.A.
dc.contributor.author Ui Ain, N.
dc.contributor.author Daǧ, H.
dc.date.accessioned 2025-02-15T19:38:33Z
dc.date.available 2025-02-15T19:38:33Z
dc.date.issued 2024
dc.description.abstract The rise of Edge IIoT networks has transformed industries by enabling real-time data processing, but these networks face significant c ybersecurity risks, particularly from OSINT-based attacks. This paper presents a resource-efficient ensemble learning framework designed to detect such attacks in Edge IIoT environments. The framework integrates machine learning models, including RandomForest, K-Nearest Neighbors, and Logistic Regression, optimized with Principal Component Analysis (PCA) to reduce data dimensionality and computational overhead. GridSearchCV and StratifiedKFold cross-validation were employed to fine-tune the models, resulting in high detection accuracy. This approach ensures robust and efficient security for resource-constrained Edge IIoT networks. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/UBMK63289.2024.10773407
dc.identifier.isbn 9798350365887
dc.identifier.scopus 2-s2.0-85215524083
dc.identifier.uri https://doi.org/10.1109/UBMK63289.2024.10773407
dc.identifier.uri https://hdl.handle.net/20.500.12469/7195
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cyber Security en_US
dc.subject Edge Iiot en_US
dc.subject Ensemble Learning en_US
dc.subject Resource-Efficient Machine Learning en_US
dc.title Resource-Efficient Ensemble Learning for Edge Iiot Network Security Against Osint-Based Attacks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57964038500
gdc.author.scopusid 59520347900
gdc.author.scopusid 59521007300
gdc.author.scopusid 57437833000
gdc.author.scopusid 6507328166
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Ecevit M.I., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Çukur Z., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Izgün M.A., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Ui Ain N., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Daǧ H., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey en_US
gdc.description.endpage 783 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 778 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4405272359
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.27
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ecevit, Mert İlhan
relation.isAuthorOfPublication 32d2136a-cb55-4ba5-9e30-1767c6f3b090
relation.isAuthorOfPublication.latestForDiscovery 32d2136a-cb55-4ba5-9e30-1767c6f3b090
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files